a2 United States Patent

Shanmugam et al.

US009465607B2

US 9,465,607 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) CONFIGURATION-BASED PROCESSING OF
REQUESTS BY CONDITIONAL EXECUTION
OF SOFTWARE CODE TO RENDER
REGIONS IN A DISPLAY

(71) Applicant: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

(72) Inventors: Vijayakumar Shanmugam, Orlando,
FL (US); Sudipto Chakraborty, Noida
(IN); Dilbaghsingh Sardar, Hyderabad
(IN)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/735,516
(22) Filed: Jun. 10, 2015

(65) Prior Publication Data
US 2015/0363191 Al Dec. 17, 2015

Related U.S. Application Data
(60) Provisional application No. 62/011,017, filed on Jun.

11, 2014.
(51) Int. CL

GOGF 9/44 (2006.01)

GOGF 9/00 (2006.01)

HO4L 29/08 (2006.01)

HO4L 29/06 (2006.01)

GOGF 17/30 (2006.01)
(52) US.CL

CPC . GOGF 8/70 (2013.01); GOGF 9/00 (2013.01);
GOGF 17/30595 (2013.01); HO4L 67/36
(2013.01); HO4L 67/42 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7467,197 B2 12/2008 Brooks
7,689,447 Bl 3/2010 Aboujaoude
7,885,847 B2 2/2011 Wodtke
7,979,296 B2 7/2011 Kruse
8,467,817 B2 6/2013 Said
2003/0204427 Al* 10/2003 GUNEccoovrvernnn. G06Q 10/10

705/1.1
(Continued)

OTHER PUBLICATIONS

Sybase Mobile Workflow for SAP Business Suite 1.2, Overview and
Customization, pp. 56, believed to be published in 2011, at http://
www.sybase.com/files/White Papers/Sybase__
MobileWorkflowForS APBusSuite_technical _wp.pdf.

(Continued)

Primary Examiner — Daxin Wu
(74) Attorney, Agent, or Firm — Omar K. Suryadevara;
Silicon Valley Patent Group LLP

(57) ABSTRACT

Server(s) prepare requests to obtain user input indicative of
at least one of approval or disapproval by conditionally
including therein one or more regions based on rules. The
rules are configurable, and each rule is associated with an
identifier of a software code. On receipt of a message
identifying a request, rules corresponding to regions includ-
able in the request are evaluated to identify regions to be
rendered. For a to-be-rendered region a software code iden-
tified in a rule action pair is executed to obtain one or more
rows, each row including multiple name value pairs. The
server(s) prepare content of the request, by including each
name value pair in a single line among multiple lines for a
row, the multiple lines being sequenced relative to one
another in a specific sequence to be displayed by a mobile
device, the specific sequence being configurable.

20 Claims, 34 Drawing Sheets

US 9,465,607 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0154741 Al
2006/0218533 Al*

7/2005 Hebert

9/2006 Koduru GO6F 11/3447
717/124

2008/0154690 Al

2009/0132281 Al

2010/0114926 Al

6/2008 Mommeja
5/2009 Lyshkow
5/2010 Agrawal

2012/0042039 Al 2/2012 Mark

2012/0084108 Al 4/2012 Bohannon

2012/0137309 Al* 5/2012 Makam G06Q 10/10
719/320

2013/0318152 Al* 11/2013 Iyer ...cccoovvieiinne GO6F 9/541
709/203

OTHER PUBLICATIONS

Using Universal Worklist, p. 1, believed to be published on or prior
to Jan. 27, 2014 at http://help.sap.com/saphelp_nw70chpl/
helpdata/en/57/¢223be82104792a15¢2df11377b9ed/content. htm.
Oracle BPM 11g Mobile Worklist with ADF Mobile, pp. 5, believed
to be published on or prior to Jan. 27, 2014 at http://andrejusb-
samples.blogspot.in/2013/04/jdevadf-sample-oracle-bpm-11g-mo-
bile.html.

Understanding PeopleSoft Mobile Applications, pp. 2, http://docs.
oracle.com/cd/E39583__01/fscm92pbr0/eng/fscm/fspf/concept__
UnderstandingPeopleSoftMobile Applications.html.

Sybase Mobile Workflow Data Change Notification, pp. 3, on or
prior to Jan. 27, 2014, at http://infocenter.sybase.com/help/index.
jsp?topic=/com.sybase.infocenter.dc01218.0155/doc/html/
vhu1284047564100.html.

Using Universal Worklist on Mobile, p. 1, believed to be published
on or prior to Jan. 27, 2014 at https://help.sap.com/saphelp__
enterpriseworkspaces11/helpdata/en/69/
279a13a294480d8375278357f944c5/content htm?frameset=/en/ee/
3837a07b3 141a3a0f42a6ecdfabace/frameset.htm.

MAXAlert, pp. 3, believed to be published on or prior to Jan. 29,
2014 at http://imaxeam.com/maximo-mobile/maxalert-workflow-
notification.

Ax Workflow iPhone inbox (mERPi), pp. 3, believed to be pub-
lished on or prior to Jan. 29, 2014 at http://www.axnosis.com/
iphone.aspx.

Apple Push Notification Service, pp. 10, believed to be published on
or prior to Jan. 29, 2014 at https://developer.apple.com/library/IOS/
documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/Chapters/ ApplePushService.html.
Workflow and application adaptations in mobile environments, pp.
8, believed to be published prior to May 20, 2014, http://ieeexplore.
ieee.org/xpl/articleDetails.jsp?tp=&arnumber=749278&
matchBoolean%3Dtrue%26searchField%3DSearch__
All%26queryText%3D%28%28%28workflow%29+OR+worklist%
29+AND+mobile%29.

Developing Workflow Engine for Mobile Devices, pp. 2, believed
to be published on or prior to Jan. 29, 2014 http://iecexplore.ieee.
org/xpl/articleDetails jsp?tp=%arnumber=4384000&
matchBoolean%3Dtrue%26pageNumber%3D3%?26search
Field%3DSearch
All%26queryText%3D%28%28%28workflow%629+OR+
worklist%29+AND+mobile%29.

Sybase Mobile Workflow for SAP Business Suite, p. 1, believed to
be published on or prior to Jan. 27, 2014, at http://www.sybase.in/
products/mobileenterprise/mobileworkflowforsapbusinesssuite.

* cited by examiner

U.S. Patent Oct. 11, 2016 Sheet 1 of 34 US 9,465,607 B2

| prepare and transmit screen(s) to receive search criteria to identify templates of requests

4 L

0 102 —+— prepare and transmit a list of names of the templates I

103 —l— receive a selected name of a template of a request I

prepare and transmit screen(s) to receive selections identifying names selected from a larger
plurality of names among name value pairs available for inclusion in a header of the requast

104 v

prepare and {ransmit screengs) to receive a set of identifiers of
105 — one or more regions that are includable in the request
‘ For each
— 106 A4 includable region

receive a rule action pair corresponding to each includable region
(wherein the rule action pair comprises a rule and an identifier of a specific
software code to be executed when the rule is satisfied)

For each

/-—107 rule

prepare and transmif one or more screens {o r?ceive, for each rule in a rule action Pair,
selections identitying an operator, a type of operand, an operand and a constan

For each

L~ 108A { action

U prepare and transmit screen(s) to receive, for each action in a rule action pair,
selections identifying an a _phc?tl n moduil,e, an object within the %pghcatxon madule, —
and fo receive as the identifier of the specific software code, a method within the chject

L]

—1~ prepare and transmit sgreen(s) to receive a mapping between input
1088 paprm%eters of the specific sof%w)are code, and att?;%utges of the req%est

—108C V

‘prepare and transmit screen(sr) to receive selections identifying names of attributes that
are selected from a larger _uraht%/ of names amonP Name value pairs output by the
specific software code (b){],re risval thereof from a relational database), and to receive a
specific sequence in which the selected names and corresponding values are to be
displayed in a region

Y

109 | receive a sequence in which two or more rules are to be evaluated relative
—1 1o one another (when muitiple rule action pairs are received for a request)

Setup Operation

(120 Y
140— Runtime Operation FRAMEWORK
FIG. TA 10—

U.S. Patent Oct. 11, 2016 Sheet 2 of 34 US 9,465,607 B2

FIG. 1B 10 [Setup Operation FRAMEWORK
: 140
% Runtime Operation

141 “l‘ receive from a mobile device, a message that identifies a type of request l

v

retrieve from one or more tables, information on requests instantiated
— by a template at least partially identified by the request type

142
/1 43 v

prepare and transmit to the mobile device, a summary of requests

_—14 v

—->l receive from the mohile device, a message that identifies a specific request in summary

y

evaluate at least one rule in a rule action pair_corresponding to at least one
includable region identitied in a set of region i entrﬂer&s)_conf:gured for the
145 request, 1o identiy region(s) to be reAdered in displaying the request

For each region
‘ to be rendered

146

execute at |east the specific software code identified in the rule action pair
corresponding to a to-be-rendered region identified by evaluation, to obtain
one or more rows (“first rows™), each first row incliding muttiple name
. value pairs, the names in the multiple name value Pagrs bem%
implemented as columns in ane or more tabies of the relational database

147 ¢

prepare at least content of the request hy including the multiple name value pairs
in multiple tines in each row (“second fow”) of the to-be-rendered region, each
name value pair being mcludeg in a single second row, the muitiple Iines being
sequenced relative to one another in the specific sequence received in the setup
operation, for use in display by a mobile device

/-1 48 l

transmit to the mobile device, a header and content of the request

149
“receive Trom the mobjle device, user input an the request (such as one of approval or
disapproval) and store in relational database

U.S. Patent Oct. 11, 2016 Sheet 3 of 34 US 9,465,607 B2

FIG. 1€

Requester . One or more
W 05 Computors

Reguest . 200
T Browser™ ' ~——1106
bkl Response: 3 MEMORY
Approved ! . A50
; N
184 187 ! \\ 151 Software Application
TN Modie A J————
(e.g. Reimbursement) 53
o R ; ™ 3
---------- Response: \\ Module B e
Approved [(e.g. Requisition)
88
—— 1 /100
""""""""" List of 7
e . Requasts
*
/] .. REWUEST - 140
; Vo] Request's A e |
{170 | EHeatler (header |] ORunu?_we
; ¢ {1 attnibutes, line § 4 peration
! item grodps) |]
":::::::::::;::::' ‘—————.—.
Request’s !
Content
! (Line lem | [174 //’

i _groups) ¢
Framework

] L- Response {contigurable)
approval/
d(zsapprova!)

ot || 130

—1"_Reques L1

161 Ten?piatas /’62 1 Setup 7]
| |ldentifierofa Request /—-‘IGZA B2 Operation

“Sereen (o Wentiy atinputes 4 14—
includable in request’s header

\

1 [dentifiers of attributes includable

%
"
in header (& in response) { /ﬂ
Screen fo identify Line items /)/
in
163

C
includable in the idéntified Requesfd]

' Tdentifiers of Line ltems $or / Configuration Tables
b £ |line item %goups) includable in 1120 (Reguest [dentifier, Ling ftems
7o | identiiied RequesSt & rendering| L6 includable in Request, Pairs of Rule
sequence 7 & Software D), Request Tables,
J [P & Tables of Name Value Pairs
Rule to include a
R spegific Ling ftem
Pair (or line item group) |
1D of Software Code 165A
16 fo render the
165B -specific Line ltem
(or line item group)

U.S. Patent

170—1"

FIG. 1D

Oct. 11, 2016

Sheet 4 of 34

173<

P

' Carrier ¥

o C O

12:36 PM

< Back Details

Expense

US 9,465,607 B2

177

Herton, Conney
Repuort for

173A

1738

173C
173D

Expanse Raport Testing 15

Horton, Connor

173K

173L

173M

e Brown, Gasey T
Sest Mayavoma T
e Mayag, 2088 T
3076482

173N

1730

% Expense Report Delsils

173F

g{} Action History

Attachments

173G

Reject

N

173 173l

173H

U.S. Patent

170—

FIG. TE

Oct. 11, 2016 Sheet S of 34

US 9,465,607 B2

174 <

Haimbursabile

43.00 174A
AT
Date Jur 12, 2014

Car Renial

Jun 11, 2014

Entortainmeant

Date Jun 8§, 2014

Hoted

Hotel axpensas

U.S. Patent

FIG.

<181

Oct. 11, 2016

TE ..

Emplo

ees -
1y82 183

Sheet 6 of 34

US 9,465,607 B2

Reimbursement{~,
Request b

Reimbu rsement\\'\
, Approved :

PROCESSOR(S)

151

One or more
Computers
200

18

50

MEMORY

AN

Reguisition]
Request \
Requisiion \
porove

€88
£—171

~ AL

g |Header of Request (e.q.
KWork {tem Header) ha
1D of a Group of Line lte?n

List of Requests \

e.g. Work tiems)
Reguest 1D

™

N

Modyle A
{eq. Reim%ursement)

Y

1
51

Software Application
{e.g. Enterprise Resource
Planning (ERP) Software)

152

Module 8
(e.g. Requisition)

]

_-100

{e.9. Work Hemp 1D) N
Y17 ~72

/¥ /

@D w»

Do

™ in the Request (e.g. |
/ . ﬁems)

group of worl

Content of Line
ftems in Group (8.4,
of work item group

e

v

161—1

List of Templates of Requests
(e.g. list of templates of Work {tems)

‘__

/

—

16 (eg. |

Identifier of a Request Template

D of Work {tem Template)

incl
{an

#1628 3%

S,
Xy
Y

reen 1o (dentily atiributes
udable in request’s header
d for response to reguest)

‘Iden’(iﬁers of attributes includable in
header (& in response)

141

(

Runtime
Operation

140

Framework
(configurable)

Setup
Operation

130

167

16

1
v
{

“Developer 165
e ‘_'_'7">Pair
1% 1658

AN

Seroon to dentty L [
e 1
Screen to idontty Line |7

4
7

Liequest (e.g. work item)

{dentifiers of Line
ttems_(or ling ftem
groups) includable in
identified Request &
rendsring sequence -

—

(Renuest Identifier, Line ltems
includable in Request, Pairs of Rule

Configuration Tables

1o render the
~specific Line item

-/

—
L Rule to include a, & Software D), Request Tables,
specific Ling \Jtem in Tables of Name Value Pairs

identified Request
ID of Software Code

U.S. Patent Oct. 11, 2016 Sheet 7 of 34 US 9,465,607 B2

FIG. 2 Legacy Oper_atlpn(s) 20 2] 1211
' Install Applications (software codes) l—-b L2111
o * 151, 152 o H-211N
ent | || poememmesmoomene o gl ork ltem \
182,]86"(;393@) < "'E’f‘?c.‘ft.e.A.p.p.".cﬁtf?’f.(f‘?ﬁ"l’?f?_C.O.d.e.s.).‘* . Templates —1| 200 |
Computer /
Frame V' 231 i
ot _ <4 Setup Operation
13()/_ —)I receive a name of a template of request (e.g. work ftem)h o

Ireceive a set of identifiers of attributes to be rendered in header of request (e.g. work item)l

236 v 233
é Ireceive a set of identifiers of groups of line items includable in request (e.g. work item)
Configur

ation v —734
T}gb‘ies FeceIve, T0r an includaple ling 1tem group, a rule and an IGentitier of a
(" Feh— software code to be executed to render the includable line item group, e
inlc'mde when the rule is satisfied (i.e. pair of rule & software code D)
ine
items
& |Ds of
software
codes to
render
line

1o
done with rules for includable line items

T B s - 241 Runtime
o | receive a message identifying a request (e.g. work item) Operatlon
g & identify includable line item groups

execute the software code
identified in a specific pair of
rule & software code ID that
corresponds to the satisfied
rule to obtain name value
pairs from a datahase

Preexistin‘g
Tables of
140 name value

i pairs l
i yes ,/-245

transmit header of request & transmit content of request (e.g. work item)
1 including one or more name value pairs in line item and receive user input on the -,
request (e.g. work item) indicative of a response (e.g. approval or disapproval) | ¢

N

x :
e { Display List of Requests | ; E
, : 251 252 2 :
Mobile Device - y A : :
170+ (Client) |Display a selected request’s headerl(---------------- Wommmmmonn ‘
/250 : 254
I Display line items within a selected line item group in request I-—->| Transmit Responsel

US 9,465,607 B2

Sheet 8 of 34

Oct. 11, 2016

U.S. Patent

91

Ve DI

o VHOE
m] & WNN YO DOQR JBqWINN 1013 ipa|ie4 Jobeuepy uslunaog
m |] B /| T3dALTINIWN0OOY snesay | W10 esesey o} sjqeup
W L]\ B/ [73dA7 INawnoogs Hepuiay|way enciddy uonisinbay
W (L] S | 347 ININN00QR sy | uomisinbay sroiddy -
ajej9q (159 | uoneInbRuoy T90IGNS W9}] WIOM |SWEN S1e|dwa] idy] oM

< 01 veN [alol -1] snomesd p

413 vm
ﬂ&mz siejdws | Wway YO R uofisinbay :awuen MOIMIOAN
yaJess
L3

Xlem]| ™ | uoieINBU0Y) Way| YoM

SmL

0¢

v20¢

US 9,465,607 B2

Sheet 9 of 34

Oct. 11, 2016

U.S. Patent

d¢ 9l

N90E
A woby | peby X m
Al aoiddy) enouddy A_, /s oSy y4aH#
anqu nsa age] asuodsd -
INqLRY Hnsey J M_&._E_Ef_:ww_m 'a X8| 9{(BJaN0IaY-UON £THOHH
— . \ - Jejo]. uoisinbay ¢ YQH# | AT 90¢
Y.L0¢ 08 190¢€ ”
Ve /A uofd11953Q | yQH#
veoe | E3 90y W4 7104 Woy4#
auey Aejdsig alge) [euwlay]
« seN [al avjo gl 78;@:_ p SOIN(LYY 49pEDY
NY WM4 SINIT DRyR Apog
MWIH edAL
Apog abessay
gorysinbay snoiddy oweN ajeidwa] ws)| MOM
jeaosddy uonyisinbay Od JOWBN MOPPHOM
uontuyag way oM
X|al =] U337 JapesH — UoNRInbIU0Y Way JJOM
505—"

US 9,465,607 B2

Sheet 10 of 34

Oct. 11, 2016

U.S. Patent

Je 9l

—

allg
gple
/ il acle vele UL yzie viE gllg «
il YA N/ N\
B/ | H/ a/ N\ onseuq uoisinboy O
= a2 i A sap seury uopsinbey | [
apo7) aJemijos ajny gouanbeg [ey IO Ul ajqepnjou] anoig waj] aurj jo aueN | 199195
A ETEEES R TSRS
ple

60¢ ——{meN] [?3e[eq]

L\

Sjtela(] Wway oM

uonisinboy anoiddy eweN ayeidway wey| YoM
|eaoddy uoipsinbay Qd ‘SWEN MOHIOM
uoniulja wey }IoM

uoijeal) dnotr wayj aut — uoieInbuon wWay YoM

g0c—"

w:m

~01E

/&_m

US 9,465,607 B2

Sheet 11 of 34

Oct. 11, 2016

U.S. Patent

dc ol

T~ ' > 9l
s W.\Q\\\\\\
1 %18 gl vsle 351¢
/ / / [
/ / []
=
A [a]l_SI | [a][e[d Jojoeiuog] M..%@EE.\ dale uowisinbay foyenuos
wejsuoy Jojeladp puelad(adAj puesadQ aweN sjny //
ﬁm.\\ SaA sauly uonisinbay :dnosy way aury Joj ajhy 9le
=] & 4 ON~ Saur uomsinbay .
- E2N i SaA S8ulT uonisinbay O
3p0) a1eM}j0S a[ny\ | 8ouanbag| wWaj] YIOM Ul ajGepnjou] dnols Way aurj Jo SWeN | 199j0%

[3uop 398jaS | []je 109}9S|

EENREEE

s|{e32q Wayl o

uoljisinhay anouddy
jenoiddy uorusinbay Od

aweN alejduwa] wayf YoM
DUIBN MOJSHOAA
uoniuys(Way YoM

uoneaty dnoly way| aul — uokeanfiyjuos) way| Jopm

g0s—"

US 9,465,607 B2

Sheet 12 of 34

Oct. 11, 2016

U.S. Patent

1¢ 9l

Joce 802¢ vozE
/ / \ qoee
/ A / {
I) 7])
R ADMNDIUT \
[OSET /
H(Z)Aenpiu) _P_ [dwjpAsuoReDIjoNSauUl hay _ OASUOIIRIIHIIONSOUTbBY
sinduj degy poyisiy SSE[D UOTEURIIR|OU FREIGNEIREIESS
0ze—" 1531290 pajasjag ut asn o3 (s)poLiaiy
T6LE = so0lqQ pajosjes peot |
OAMOISTHBAGIAY
_ anowWwsy >> _ OAdBEssapbuILIBMAIOSIADY
DASUONR1LIONSU TUaWpUaLLY
DASUOIIBDIJONSAUITD3Y OAS|/EIOEIU0Y N
s}o8iqQ pajiejes g S}9314Q 3|gejieny
ainpopy uoigeajddy ui eyep $s322¢ 0} s332(4Q
®| pysuonesyijonjeroiddybaytenses sdde-siorIg| ewenN einpoyy uogesddy

sle—" ya1eas

HOI1RIYIJUBP] 3PO7) 2IEMHOS ~ UonRINBIU0Y WD} HIOM

1e="

US 9,465,607 B2

Sheet 13 of 34

Oct. 11, 2016

U.S. Patent

4¢ 9l

91

geze <mwm

; ' :
N 5 fejdsiq adA] 1oeiu0g fejdsigedAjioenuoy
/Al £l Jayddng Ja1|ddngbbing
[£ UMOUY JON 921n0S pun4 UMOUYJONPINOSPUN 4
] 2] uonduasag uondiiasag
s | aury aUI
13puady a3uanbsg jduioid awep singURy

«

Svon Al o051 oo >

(Z)Kianpyiuriduw| gASUONEIHONSAUIThaY poylaly PalaR|as Jo sinding

g0z¢e
/
oomm//m_ \
[A[Kisnmiur] [AJ[dujpasuonesijonsaurihay] oAsuonesiijoNsaulbay
syndup dejy PEIELT S$SE[) UoHEUDLID|ULL 199l pPa1Iepes
18193000 pajasjag ul (s)poual 19j8S
x| = _m_ U0I}BIYIIUIP] BPO7) 3IEMJOS — UOKEINBIjU0) W] HIOM

[e—""

US 9,465,607 B2

Sheet 14 of 34

Oct. 11, 2016

U.S. Patent

9¢ 9l

300E~
/E

oupmscww indinQ Jspio-ay

91

E feydsiq adA} 1oenuon Ae|dsigadA { 1oenuo)

s Jaijddng Ja1jddngbhing

O a g JON 924008 puny UMOUVIONSINOSPUN

' pajqeuF|eIIBuwLLogS| uonduosag uonduosag

x fnueny aur aul

J9pug SHIRISI0JBAU0] ydwiord awey aingURy

£ce 4 4 fejdsigadAh 1oemuog | w
mV.M . RILBONSSUITDaY pOYIBINl PeYIB|as Jo sinding
SGLE UMOUMIONBINOSPUNY
uondisosaq
8616
M ; auf
A

[A[@%enniu] [A[jdwioAsuonedioNsauihay | pAsuoiiealiionNsaulhay

synduj depy

poyisiy

§58]7) UOREIURwRaU]

308140 pajosias

112010 paydajes ul (SPOUFR 19338

£ P

UO}EILRUSP] 3P0Y 3JEMOS

~ uopenbijuoy way YoM

(g—""

US 9,465,607 B2

Sheet 15 of 34

Oct. 11, 2016

U.S. Patent

10¢
‘l\/@@ 91
AdaLINg
uoisinbay up3
Agjdsiqy adA | jusLundog
v 0(:
1aquny uoiisinha
be|J J6j083U0)
uoljeansnf q17¢ YizZ¢
X2 9|(2Jon098.-UdN
[P0 uoiisinhay get
uonduasag \
9|0y Wl i —
R Buing Bue| eael-ssepo by
Al Pl Jusuinaog; buiig buey enelssejo (Bly
L3}{ 440M JO ANqLAYY A9jauleded Jnau| Jo aUAL T3poleleg ynau
178" (O RnpiurdwipAsUoneIIoNSIUIThay (POYIBIN PalIs|as 4O siajaweled nduj depy
momm
902¢ 14 \
[Al(Z)fianpyjul] [Al[]dWQASUOREdIONSaIThaY] OAsuoneoloNsaurbay
synduj defy pouIsly SSE[J Uoijejuseldw] 123lqQ pajasfas
02 —" 5302(00 Pajoafag ul (S)PoYIBy 199(9S
x | ..ﬂ...._ m_ UOHEIY[UIP| BPOY 3I1BM}OS — UOIRINBIUOY WY} YI0M
Lg—"

U.S. Patent

FIG. 4A

FIG. 4B

Oct. 11, 2016 Sheet 16 of 34 US 9,465,607 B2

Transmit screen for Developer to search
for Work Item Templates (FIG. 3A)

Y

Receive user input and build search criteria to_L-—1
query preexisting table “Work tem Templates”

* - 413
Transmit a list of names of query- |_—"

matching Work ltem Templates (FIG. 3A)

v

Receive user input as Developer’s selection | __—4— 414
410~ |of a Work ltem Template to set up (FIG. 3A)

Y

Store name of Developer-selected Work ltem Template
in a configuration table “Configured Work ltems” 415

—t— 420

For the selected Work ltem Template,
retrieve attributes from a pre-existing|
table “Workflow Attributes”

* 427
Transmit screen with a list of attributes—T

specific to Work Item and a field to select
each attribute as heing renderable (FIG. 3B)

Y | 423

Transmit another list of attributes to be 7
used to capture decisions by users

Y

Receive user input from Developer on the
lists and persist to configuration tables —4—1
“Header Attributes” and “Result Attributes”

_—— 424

U.S. Patent Oct. 11, 2016 Sheet 17 of 34 US 9,465,607 B2

430
FIG. 4C \
l Transmit screen to create line item groups includable in Work ltem (FIG. 3C) | \

431/ *

| Receive user input identifying name(s) of line item group(s) (FIG. 3C)—{— 432

L

I Transmit screen to receive a rule for each identified line item group |——433

Y

1 Receive user input on the rule identifying:
operator, operand type, operand and constant (FIG. 3D)

v

IPer§ist to configuration table “Detail Line ltem Rules”, line item’s name and rulel

w” Y

Transmit an opticn to select a type of software code to he executed
(to obtain name value pairs for rendering in line item) e.g. type may |
be: a database query in SQL or a method in a data access object

v

Transmit a screen {o identify software code (based on identifiers of
data access objects to retrieve name value pairs e.g. implemented as
| views on preexisting tables “Details Data Source”), see FI1G. 3E

w v
Receive via user input, Identifiers of data access objects or SQL Text «fe 438

Y

Parse definitions of data access objects or SQL Text ——— 439

Y

Transmit a screen to select for rendering, and d—— 449
reordering: atiributes of data access objects or SQL

Y

Transmit a choice to select a software program in application module | 441
or data access object, and to select a method therein, see FIG. 3G

LA

44\ Receive & parse a selected Method and identify input parametersfe. 447

v

Transmit a screen to map the input parameters fo attributes of work item (FIG. 3H)

L]

lReceive user input and persist to configuration table “Method Parameters Mapping” I-—-—— 444

— 436

U.S. Patent Oct. 11, 2016 Sheet 18 of 34 US 9,465,607 B2

510 —-

Receive from mobile device, a “Get Summary” message

N\
* 511

Retrieve from table “Configured Work ltems”

(see FIG. 4A, act 415) names of Work Item Templates
FIG. bA

Y

Fetch from preexisting table “Work Items”, a Summary
of Work ltems which were instantiated by the identified

template (in act 512, above)

Y

513

514

Prepare XML response of Summary (or list)

Y

Return response to mobile device~—— 515

520 —t—

Receive from mobile device, “Get Details” message

Y

Get from message, Identifier of Work ltem p——522

Y

FIG.5B |

Retrieve from table “Configured Work ltems”
Workflow Type and Template for the work item 1D

24
¥)

Use the Workflow Type and Template to retrieve metadafa
from configuration tables: (a) Header Attributes, (b) Result
Attributes, (c) Line Items, (d) Rules & software codes,
(e) Line ltem attributes and (f) Method Parameters Mapping

o

‘ P

Execute Rules & software codes to obtain name value ffairs
from data access objects (e.q. implemented as views on

preexisting tables “Details Data Source™)

Y

Use metadata to transform name 4
value pairs into work item details

| 526

* 27
Prepare XML with header, details & result attributegf

521

U.S. Patent Oct. 11, 2016 Sheet 19 of 34 US 9,465,607 B2

524
Retrieve Attributes of Work ltem renderable in ——>24A

Header from configuration table “Header Attributes”

FIG. 5 '

Retrieve Result Attributes for Actions in Work ltem~]
from configuration table “Result Attributes”

Y

Map Work ltem’s Line ltems e 504G

5248

5240—— 524C1
Vi

Retrieve for a given line item, from configuration table “Rules &
software codes” one or more Rules that apply to current work item

Y

Identify data access objects containing software code
FlG 5D to be executed also from configuration table “Rules
& software codes” corresponding to each rule —=—524C2

Y

Identify from configuration table “Line Item
Attributes”, the Attributes in data access |
object to return in response

—b524C3

U.S. Patent Oct. 11, 2016 Sheet 20 of 34 US 9,465,607 B2

FIG. 6A

<%xml version = '1.0" encoding = 'UTF-8'7>
<response status="200">
<nsh:output xmins="http:/ /xmins.oracle.com/apps/fnd/wt/worklist/service/rt/ artifacts / notificationdetails /*
xmins:nsZ="http./ /xmins.oracle.com/apps/fnd/wt/ worklist/service/ rt/artifacts /faull/* xmins:ns3="http://
xmins.oracle.com/apps/fnd/wf/ worklist/service/rt/ artifacts/ worklistmgmt/" xmins:nsd="http:/ /xmIns.oracle.com/
apps/fnd/wi/worklist/service/ rt/ artifacts /directoryservices/" xmins:ins5="http://xmins.oracle.com/apps/fnd/wf/
worklist/service/rt/ artifacts /worklist/">
<netificationdetails>
<header>
<region name="Custom Header">
<view>
<row>
<attribute name="Description” id="0">Hand-Rubbed Hardwood Desk Set, Walnut Base with 10 ki Gold
Filled Ball Pen and Pencil</attribute>
<attribute name="Justification” id="1"/>
<attribute name="Non-Recoverable Tax" id="2">0.00 USD</attribute>
<attribute name="Requisition Total" id="3">460.00 USD</attrihute>
</row>
</view>
</region>
<region name="Header">
<view>
<row>
<attribute order="0" type="String" name="From" id="Frombser">Baker, Catherine</attribute>
<attribute order="1" type="Siring" name="To" id="Toliser">Brown, Casey</ attribute>
<attribute order="2" type="Date" name="Sent" id="BeginDateF">2014-04-01T04:56:09.0007< /attribute>
<attribute order="3" type="Date" name="Due" id="DueDateF"/>
<attribute order="7" type="String" name="ID" id="Notificationld">6275012</attribute>
</row>
</view>
</region>
</header>
<body>
<region id="1022" name="Requisition Lines" part="DETAILS"/>
<region id="1021" name="Action History® part="HISTORY"/>
</body>
<result>
<attribute type="APPROVE" name="APPROVE" id="0">Approve</atiribute>
<attribute name="APPROVE_AND_FORWARD" id="1">Approve And Forward</attribute>
<attribute name="FORWARD" id="2">Forward</attribute>
<attribute type="REJECT" name="REJECT" id="3">Reject</attribute>
</result>
<control/>
</notificationdetails>
</ns5output>
</response>

U.S. Patent Oct. 11, 2016 Sheet 21 of 34 US 9,465,607 B2

FIG. 6B

<Mml version = '1.0" encoding = 'UTF-8'7>
<response status="200">

<ns5:output xmins="http:/ /xmins.cracle.com/apps/fnd /wi/worklist/service/rt/ artifacts /
notificationdetails /" xminsins2="http:/ /xmins.oracle.com/apps/fnd/ wf/worklist/ service/rt/ artifacts/
fault/" xminsins3="http:/ /xmins.oracle.com/apps/fnd/wi/worklist/service/rt/ artifacts /worklistmgmt/*
xminsinsd="hitp:/ /xmins.oracle.com/apps/fnd/ wf/worklist/service/rt/artifacts /directoryservices /"
xmins:ns5="http://xmins.oracle.com/apps/fnd/wf/worklist/ service/rt/ artifacts /worklist/">

<notificationdetails>
<hody>
<region id="1022" name="Requisition Lines" part="DETAILS">
<view arrange="detail">

p <row> / 601A
<atiribute order="1" type="0" name="Line" id="Line">1</attribute>

<attribute order="2" type="0" name="Description” 1d="Description">Hand-Rubhed

Hardwood Desk Set, Walnut Base with 10 kt Gold Filled Ball Pen and Pencil</attribute> =018
<attribute order="3" type="0" name="Supplier® id="SuggSupplier">Corporate Express
Office Supply</attribute> e 6§01 €
<attribute order="4" type="0" name="Cost Center" id="CostCenter">740</ attribute 601D
601 '< <attribute order="5" type="0" name="Unit" id="Uom">SET</attribute> e 601E
<attribute order="6" type="0" name="Quantity" id="Quantity">3</ attribute> == 601F

<attribute order="7" type="0" name="Price" id="RateConsclidate">100 USD</ attribute>=—601G

<attribute order="8" type="0" name="Amount" id="LineAmtConsoclidate">300 USD</
attribute> 601 H
_ </row>
(- <row>

<attribute order="1" type="0" name="Line" id="Line">2</attribute>

<attribute order="2" type="0" name="Description” id="Description">Lustrous Chrome
Pen and Pencil Set</attrihute>

<attribute order="3" type="0" name="Supplier" id="SuggSupplier">Corporate Express
Office Supply</attribute>

<attribute order="4" type="0" name="Cost Center" id="CostCenter">740</ attribute>
602< <attribute order="5" type="0" name="Uni" 1d="Uom">EA</attribute>
<attribute order="6" type="0" name="Quantity” id="Quantily">4</attribute>
<attribute order="7" type="0" name="Price” id="RateConsolidate">40 USD</atlribute>
<attribute order="8" type="0" name="Amount" id="LineAmiConsolidate">160 USD</

attribute>
. </row>
</vigw>
</region>
</hody>
</ notificationdetails>
</nshoutput>
</response>

U.S. Patent Oct. 11, 2016 Sheet 22 of 34 US 9,465,607 B2

FIG. 6C

<7xml version = '1.0' encoding = 'UTF-8'7>
<response status="200">
<ns5output xmins="http:/ /xmins.oracle.com/apps/fnd/wf/worklist/service/rt/artifacts / notificationdetails /"
xmins:ns2="http:/ /xmins.cracle.com/apps/fnd/wf/werklist/service/rt/artifacts /fault/” xmins:ns3="http://
xmins.oracle.com/apps/fnd/wf/ worklist/service/ri/artifacts/ worklistmgmt/" xmins:nsd="http:/ /xmins.oracle.com/
apps/tnd/wi/worklist/ service/ 1t/ artifacts/directoryservices /" xmins:ns5="http:/ /xmlns.oracle.com/apps/fnd/wi/
worklist/service/rt/artifacts /worklist/">
<notificationdetails>
<header>
<region name="Custom Header'>
<view>
<rgw>
<attribute name="Description” id="0">Event Plannar contract</attribute>
<attribute name="lustification" id="1"/>
<attribute name="Non-Recoverable Tax" id="2">0.00 USD</attribute>
<attribute name="Requisition Total" id="3">1,000.00 USD</ aftribute>
</row>
</view>
</region>
<region name="Header">
<yigw>
<row>
<attribute order="0" type="String" name="From" id="FromUser">Stock, Pat</attribute>
<attribute order="1" type="String" name="To" id="Tolser">Brown, Casey</attribute>
<attribute order="2" type="Date" name="Sent" id="BeginDatet">2014-04-01705:22:17 0007 </ atiribute>
<attribute order="3" {ype="Date" name="Due" id="DueDateF"/>
<attribute order="7" type="String" name="ID" id="Notificationid">6275023</ attribute>
</row>
</view>
</region>
</header>
<hody>
<region id="1023" name="Reguisition Lines contract" part="DETAILS"/>
<region id="1021" name="Action Histary" part="HISTORY"/>
</hody>
<result>
<attribute type="APPROVE" name="APPROVE" id="0">Approve</attrihute>
<atiribute name="APPROVE_AND_FORWARD" 1d="1">Approve And Forward</attribute>
<attribute name="FORWARD" id="2">Forward</attribute>
<attribute type="REJECT" name="REJECT" id="3">Reject</atiribute>
</result>
<control/>
</notificationdetails >
</nshoutput=>
</response>

U.S. Patent Oct. 11, 2016 Sheet 23 of 34 US 9,465,607 B2

FIG. 6D

<Ixml version = '1.0" encoding = 'UTF-8'7>
<response status="200">
<nsHoutput xmins="http:/ /xmins.oracle.com/apps/fnd/wi/worklist/service/rt/artifacts / notificationdetails /"
aminsins2="http:/ /xmins.oracle.com/apps/fnd/wf/worklist/service/ rt/artifacts /fault/" xmins:ns3="http://
xmins.oracle.com/apps/ fnd/wt/worklist/ service/rt/ artifacts/worklistmgmt/" xmins:nsd="ntfp:/ /xmins.oracle.com/
apps/nd/wi/worklist/ service/rt/ artifacts /directoryservices/" xmins:nsb="http:/ /xmins.oracle.com/apps/fnd/wi/
worklist/ service/rt/artifacts/worklist/">
<notificationdetails>
<hody>
<region 1d="1023" name="Requisition Lines contract’ part="DETAILS">
<view arrange="detail">
<row>
<attribute order="1" type="0" name="Line" id="Line">1 </ attribute>
<attribute order="2" type="0" name="Description" id="Description">Event Planner</attribute>
<attribute order="3" type="0" name="Supplier" 1d="SuggSupplier"/ >
<attribute order="4" type="0" name="Contractor Name" id="ContractorName"/>
<attribute order="5" type="0" name="Contractor Status” id="ContractorStatus">Not Applicable</
attribute>
<attribute order="6" type="Date" name="8tart Date" id="StartDate">2014-04-02T707.00:00.000Z< /
attribute>
<attribute order="7" type="0" name="End Date" id="EndDate"/>
<attribute order="8" type="0" name="Cost Center" ic="CostCenter'>740</attrihute>
<attribute order="8" type="0" name="Unit" id="Uom"/>
<attribute order="10" type="0" name="Quantily" id="Quantity"/>
<attribute order="11" type="0" name="Price" id="RateConsolidate"> USD</attribute>
<attribute order="12" type="0" name="Amount" id="LineAmtConsolidate">500 USD </ attrihute>
</row>
<row>
<attribute order="1" type="0" name="Line" id="Line">1.1</attribute>
<attribute order="2" type="0" name="Description" id="Description">Event Planner - Expense</
attribute>
<attribute order="3" type="0" name="Supplier® id="SuggSupplier"/>
<attribute order="4" type="0" name="Contractor Name" id="ContractorNams"/>
<aftribute order="5" type="0" name="Contractor Status" id=="ContractorStatus"/>
<attribute order="6" type="0" name="Start Date” id="StartDate" />
<attribute order="7" type="0" name="End Date" id="EndDate"/ >
<attribute order="8" type="0" name="Cost Center" id="CostCenter">740</attribute>
<attribute order="3" type="0" name="Unit" id="Uom"/>
<attribute order="10" type="0" name="Quantity" id="Quantity"/ >
<attribule order="11" type="0" name="Price" id="RateConsolidate’> USD</ attribute>
<attribute order="12" type="0" name="Amount" id="LineAmtConsalidate">500 USD</attribute>
</row>
</vigw>
</region>
</hody>
</notificationdetails>
</nshoutput>
</respense>

U.S. Patent Oct. 11, 2016 Sheet 24 of 34 US 9,465,607 B2

2y FIG. 7A -

DISPLAY |y §oozoomzmossmssssceenneoncnacenns e :
[MAIN MEMORY RO STORAGE DEVICE | ¢
E e 110 / 5
1114 \ oy 110 3
INPUT E) :
pevice [T BUS :
t sy
' 7 1109 3
1113\ 5 [- PROCESSOR commonicaTion }/ |
. : . INTERFACE ;
CURSOR i . :
controL [
. SERVER ooaL
\bo NETWORK HOST
H 1125
FIG7TB
{
150
emmena e et & 100
E /]51 152 ERP Software E Framework 10
i | Reimbursement |§ Human i
E Module Resources Requisition S —120
: Module Module | 3
1130
RDBMS
? MAIN MEMORY

~Relational Database

File System

U.S. Patent Oct. 11, 2016 Sheet 25 of 34 US 9,465,607 B2

FIG. 3A

a 2

o C_D

Lasries B

CBROWN

800
Requests (for approval/disapproval) F—
*' Pending Approvals
K Expenses 1798

& .

@ Recruitment 179C
=8 Requisitions 1790
ﬁ Purchase Orders 179E

Past Approvals

ﬂi

Settings

About

. Q

Sign Out

U.S. Patent

805<

Oct. 11, 2016 Sheet 26 of 34

FIG. 8B

o C >

Carsiey ¥ 8:54 Bht e
(Sender, Subject)
Jones, Kerry DOt 1, 2014

Exponase WS4 o Junes, Kerey 38500)

US 9,465,607 B2

S

Marton, Lonnor QoA 10, 24
Expanve WR03G for Frost, Janug (17,223.00 2
LED

Jores, Keny O 1, 2014
Empenae WRTORY for Joney, Kery MA8400 >
ushy

Jones, Kerry Cot 10, 2014
Exparss WI0LH for Josss, Bary {18000 >
LB08

Jorees, ety Tiot 140, 2014
Exganse WR1028 foe Jones, Keny @077.00 3
sy

805A

805!

Jones, Kerry Dok Hi, J014
Eepenss WEERS R Jomss, Bary 447200 >
(R

APEXP (x4 10 24
Expanse WSS ke Joney, Kanry 31,221.00 ¥
LS

APEXP Ot g, 2014
Expenae WITOER for Jores, Kerry (84,0008 >
Usty

APEX® Qut 10, 2014

Fxpanss WAT01E Tor Jones, Merry 3000000 >

3 S

305N

U.S. Patent Oct. 11, 2016 Sheet 27 of 34 US 9,465,607 B2

FIG. 8C

- N

o C_D
170—T
Sarrier ¥ BES PM b3
¢ Back Datails [~
Expense W31039 for Frost, Jamie
(17,223.00 USD) s
ﬂ/
Perann Frogt, Jamia -
806{ Cost Senter 530 8068
Pepart Total 17,20%.00 USD 806C
From Haton, Connor 807A
o Broeay, Casey 807B
807 Sent it 10, 2014 807C
Dua Ot 15, 2014 807D
iy X774 - S S07E
% Expenge Linsy }\
" 13
(1) action History >\\
[~ 814
? Hejact q Approve
173} 1731

N %

U.S. Patent

809<

Oct. 11

,2016

FIG. 8D

Sheet 28 of 34

US 9,465,607 B2

4

o C O

\

{Back Expense Lines 4
ﬁ Expense W31039 for Frost, Jamie | | 805)
(17,223.00 USD)
1 810A
Expatse Type Car Povgdad -
Justitioation Car Fwre Exparses 310B
Arasunt 1RE00 LD 810C
Date Bap 85, 3514 810D
Exparne Tvps Entortsdrmment 211A
Justification Entoviainenant Exporess 811B
Amount 160.00 USD 311C
Liste S 36, 2014 811D
Eaponae Tipe Maab 812A
Justification Maosls Exponses 8128
Aencand 37 U USD 812C
Date Sep 24, 2014 812D

Approve
\

? Reject
|

173

\

1731

U.S. Patent

170

Oct. 11, 2016

FIG. SE

Sheet 29 of 34

US 9,465,607 B2

o C

\

Requisitions

/\

Sender, Subject

o
)

Back, Pat Dot i3, 8018
Prechass Regdation 14381 G Slook, Pat |
BN D0UBES

Bakowr, Gathwring Ot G, 8018
Prechase Reqdetion 18380 for Block, B
28000 UB

Back, Pat Db, BO4
Puehase Pegdetion 18380 o Slbok, B
23 US

Havk, Pat 0t 208
Pumbvise Reguidtion 14358 for Block, Pad |
frac s REagio)

Baker, Cathuine O0b 40, 3018

Prgohase Begdsition
4 s a0 LISty

14357

for Block, Pat

Hakey, Catherins Ot 1, 8018
Pusshase Reguistion 14356 fr Block, Bed)
SUah Usy

Bavk, Pat D0k 40, 3018

Prgeohase Pogdsition
530000 Usty

143588

for Block, Pat

ook, Pat T, 208
Pueshase Regulstion 13384 4o Blook, Bt
#4200 U8

ook, Pat Ok 10, 3048

Pumshase Roguisition

Lt Binek, Pt

U.S. Patent

Oct. 11, 2016

FIG. 8F

Sheet 30 of 34

US 9,465,607 B2

/

N

o C O

\

{ Back

Dstails

i

"W Purchase Requisition 14358 for Stock, Pat
(2,334.00 USD)

Pogoription Boftusrs Enginsar

Totd 233400 URD

Ta oo B.e0USH

Rucovaryhis

Frews Block, Pat

ki Brown, Qugay

B et 1, 3018

¥ BeThest

@ Retudsition Lires >

@ Action History »
q Faject q Approve
173} 1731

9%

U.S. Patent

170

Oct. 11, 2016

Sheet 31 of 34

FIG. 8G

US 9,465,607 B2

/

@)

>

\

{Back Requisition Linss [+
A Purchase Requisition 14358 for Stock, Pat
LR (2 334.00 USD) S14A
» //
Line 3 -+
Dngeripdion Bothenre Erginer 814B
Supplier See Detmly 814C
Status Pending 814D
St Date Ot 11, 2014 814k
Gaost Denter RO 814F
Prins UsH 814G
At 233400 LISD Tl 814H
€ Raject Approve
\
1734 1731

U.S. Patent

Oct. 11, 2016 Sheet 32 of 34

FIG. 8H

US 9,465,607 B2

o C O

\

— Purchasa Orders

Gender, Subject

c
)

Stock, Pat Ot 10, 2014
Vigion Operations - Standard Puschase Grder
8248, for SO0 USD rauiws yow
snpyesl.

Btock, Pat Dot 1, 2014
Yision Qperations - Stactiand Purchase Ordey
BG4T, o ARB300000 WU reguies your
approval,

Stk Pat G g, 2014

Vigion Operations - Stenderd Puechase Oadar
RS, for SUE00000 USD regubes youwr

sproval,

Btoek, Pat Ot 35, #14
Wision Dperaions - Staadaes Porchase Grder

Boat, for 48300000 LB maubng your

apparoval,

Btovk, Pat et 10, 24
Wisior: Qresations - Blandard Puschase Dafer
5339, v 40300000 USD remibes wour
sopmoval,

Stock, Pat D0t 1, 2014
Wigeny Opsraliong ~ Stanciars Purchasy Cider

B4, for 48300000 LSO mauies v

shproval

ook, Pat Rap 18, 2014

Vision Opandiong - Stardand Purchase Outar 3
e s Ry -

U.S. Patent

170—

Oct. 11, 2016

Sheet 33 of 34

FIG. 8l

US 9,465,607 B2

/

@)

>

\

£ Back

Detadls

g

0
-

Vision Operations — Standard Purchase
Order 5940 for 493,000.00 USD req...

Dooumait comnant Purchase Ordor
Type

Cperaling Wt Viglon Upestions
Sunplias Ganprg! Blooin
Suppdior Site OF

Curranay LR

TFax EE

Araount AR3R00.00
Braparer Stonk, Pat

From Slogk, Pat

e Brown, Dasny
Bart Dot 10, 2018

e SRTTERY

% P Linoy >
@ Achion History »
? Reject q Approve

173 1731

N

%

U.S. Patent

170

Oct. 11, 2016 Sheet 34 of 34

FIG. 8

US 9,465,607 B2

/

o C

\

N

Curvigr 4 856 PI4 T
{ Back PO Lines g
ﬁ Vision Operations — Standard Purchase
Order 5940 for 493,000.00 USD req...
Linn 1
o F2008
Pancription Motdle phibee
tinit Eauh
Orasrdity O
Prine A80.00 LI8D
Lire Smcand 000,00 S
Kaoad By Dada -0 20
ting 2
Daseription srnount byse
Finit Divtlaes
Quantily 00
Brice 1.00 UShH
Lire Apvgind 140000 USD
Noed By Dale 30-O0FR04
Lo &
Dasoription g
9 Fejort q Approve
173} 1731

US 9,465,607 B2

1
CONFIGURATION-BASED PROCESSING OF
REQUESTS BY CONDITIONAL EXECUTION

OF SOFTWARE CODE TO RENDER
REGIONS IN A DISPLAY

CROSS-REFERENCE TO PROVISIONAL
APPLICATION

This patent application claims priority under 35 USC
§119 from U.S. Provisional Application 62/011,017 entitled
“CONFIGURATION-BASED PROCESSING OF WORK
ITEMS BY CONDITIONAL EXECUTION OF SOFT-
WARE CODE” filed on Jun. 11, 2014 by Vijayakumar
Shanmugam, Sudipto Chakraborty and Dilbaghsingh
Sardar, which is hereby incorporated by reference herein in
its entirety.

FIELD

This patent application relates to apparatuses, methods
and non-transitory computer-readable storage media for
processing of requests for user input which are normally
used to obtain responses of approval (or disapproval) from
users.

BACKGROUND

Client devices (“clients”™), such as a desktop computer or
a handheld wireless device may execute software instruc-
tions in the form of application programs (also called “client
apps”) that are used by a manager to approve of one or more
requests related to work (“work items”) in an organization.
Examples of work items are requests typically submitted by
employees, such as requests for requisition and/or requests
for reimbursement of out-of-pocket expenses. Work items
typically have one or more attributes, such as amount, due
date, description, etc., which may be entered by the
employee and displayed to the manager by a client app, in
order to obtain the manager’s approval (or disapproval) of
the work item.

Client apps obtain work items to display to a manager
from programs executing in servers that implement business
logic (also called “business applications™). Each business
application typically provides its own interface, and hence it
is common for a specific client app to be designed to retrieve
and display work items generated by a corresponding busi-
ness application. In such systems, a client app designed for
one business application cannot retrieve and display work
items from another business application. Thus, multiple
client apps may be used by a manager, to review and
approve work items in multiple business applications.

It is more efficient for a manager to use a single client app
to access work items in multiple business applications. Due
to existence of multiple interfaces of multiple business
applications, creation of the single client app requires re-
creation of software instructions that exist in the multiple
client apps. Hence, there is a need for apparatuses, methods
and non-transitory computer-readable storage media as fol-
lows.

SUMMARY

In accordance with the invention, one or more computers
(e.g. in which applications are deployed, also called “serv-
ers”) process requests to obtain user input (e.g. work items),
by conditionally including, within the requests, one or more
regions (also called “groups of line items™), based on rules.

10

15

20

25

30

35

40

45

50

55

60

65

2

The rules are configurable, and each rule is associated with
an identifier of a software code (also called software code
identifier) to be executed to render a region (or group of one
or more line items) when the rule is satisfied. The rule and
the software code identifier together form a pair (“rule
action” pair), which corresponds to one region (or line item
group) that is includable in a request (e.g. work item).

During setup, servers (also called “second computers™)
receive one or more selections from one or more clients that
are used by one or more developers (also called “first
computers”) via one or more screens for a template to be
used to instantiate each request (e.g. work item). The
received selection(s) identify each region (or line item
group) that is includable in each request (e.g., work item).
For each such region, the selection(s) further identify and a
corresponding rule action pair.

During runtime, on receipt of a message identifying a
request (or work item), the one or more servers (or second
computers) evaluate the one or more rules corresponding to
regions (or line item groups) that are includable in an
identified request (e.g., work item). The evaluation is per-
formed to identify one or more regions (or line item groups)
which are to be rendered (when their corresponding rule is
satisfied). For a to-be-rendered region (or line item group),
the one or more servers (or second computers) execute a
specific software code identified in the rule action pair. The
execution is performed to obtain one or more rows of data
on the region (or line item group). Each such row of data
(“first row”, or “data row”’) may include multiple name value
pairs.

The first row(s) of data that are output by execution of the
specific software code in one or more servers (or second
computers) may be retrieved from a relational database that
may store corresponding rows (which are returned by execu-
tion of a database query). Hence, in such embodiments, each
first row may include multiple name value pairs. The names
(which identify attributes of a request) in the multiple name
value pairs may be implemented as columns in one or more
tables of the relational database.

The one or more servers (or first computers) transmit the
multiple name value pairs (or details) of a first row (“data
row”) output by the specific software code to a mobile
device as multiple lines (“display lines”) in content of the
request (e.g. work item), with or without a header (depend-
ing on the embodiment). The transmission is performed to
obtain user input indicative of at least one of approval or
disapproval of the request (e.g. work item). Each name value
pair is included in a single line (“display line”) among
multiple lines of a row in the request (“second row”, or
“display row”). Multiple lines (“display lines”) within a
second row (which correspondingly contain the multiple
name value pairs), are sequenced relative to one another in
a specific sequence to be displayed by the mobile device.
The specific sequence is received as user input, from one or
more developer(s) who operate the one or more clients (or
first computers).

It is to be understood that several other aspects of the
described embodiments will become readily apparent to
those skilled in the art from the description herein, wherein
it is shown and described various aspects by way of illus-
tration. The drawings and detailed description below are to
be regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates, in a flow chart, acts performed to
configure generation of requests to obtain user input indica-

US 9,465,607 B2

3

tive of at least one of approval or disapproval, in some
illustrative embodiments in accordance with the invention.

FIG. 1B illustrates, in a flow chart, acts performed at run
time to generate requests to obtain user input indicative of at
least one of approval or disapproval, in some illustrative
embodiments in accordance with the invention.

FIG. 1C illustrates, in a data flow diagram, configuration-
based processing of work items by use of a framework in
certain embodiments in accordance with the invention, by a
developer supplying configuration information including
identifiers of line items (also called “line item identifiers™)
that are includable in a work item, and a pair formed by a
rule and an identifier of a software code (also called “soft-
ware code identifier”) to be executed to render one or more
includable line item(s) in the work item when the rule is
satisfied.

FIGS. 1D and 1E illustrate a mobile device 170 of FIG.
1C configured to display a work item’s header and content
respectively.

FIG. 1F illustrates, in a data flow diagram similar to FIG.
1C, configuration of a framework that supports use of a
mobile device 167 configured for use by a developer, and
further supports use of another mobile device 189 config-
ured for use by an employee in additional embodiments also
in accordance with the invention.

FIG. 2 illustrates, in a flow chart, acts performed in set up
operation 130 in the framework of FIGS. 1C and 1F to
receive and store configuration information and acts per-
formed in runtime operation 140 to use the stored configu-
ration information to process work items in some illustrative
embodiments in accordance with the invention.

FIGS. 3A-3H illustrate screens generated by one or more
computers 200 of FIG. 2 executing setup operation 130 of
framework 100 in certain illustrative embodiments.

FIG. 4A-4C illustrate, in flow charts, acts performed by
one or more computers 200 by use of one or more processors
programmed with a sequence of instructions of software
stored in one or more memories, to implement setup opera-
tion 130 of framework 100 in exemplary embodiments in
accordance with the invention.

FIG. 5A-5D illustrate, in flow charts, acts performed by
one or more computers 200 by use of one or more processors
programmed with a sequence of instructions of software
stored in one or more memories, to implement runtime
operation 140 of framework 100 in exemplary embodiments
in accordance with the invention.

FIGS. 6A-6D illustrate output generated by runtime
operation 140 of framework 100 by performance of the acts
illustrated in FIGS. 5A-5D.

FIGS. 7A and 7B illustrate, in block diagrams, hardware
and software portions of one or more computers 200 that
perform one or more acts illustrated in FIG. 2 and in FIGS.
4A-4C and 5A-5D in some embodiments.

FIGS. 8A-8] illustrate displays that are rendered by
mobile device 170 of some embodiments.

DETAILED DESCRIPTION

In illustrative embodiments, one or more computers 200
(also called “servers”) may be programmed with software
100 (called “framework™) that includes a setup operation
130 and a runtime operation 140 as shown in FIGS. 1A and
1B, as follows. Specifically, in a setup operation 130, the
computer(s) perform acts 101-109 as shown in FIG. 1A, to
configure generation of requests to obtain user input indica-
tive of at least one of approval or disapproval, e.g. by
preparing and transmitting screens to receive selections from

20

25

35

40

45

50

55

4

one or more computers operated by human(s) (e.g. devel-
opers). Thereafter, in a runtime operation 140, the
computer(s) perform acts 141-149 as shown in FIG. 1B, to
generate requests and receive user input thereon, e.g. by
preparing and transmitting requests to receive the user input
from one or more mobile devices operated by other
human(s) (e.g. approvers). Although acts 101-109 are
described below, and illustrated in FIG. 1A in a first
sequence (“setup sequence”), they may be performed in any
other sequence relative to one another. Similarly, acts 141-
149 are described below, and illustrated in FIG. 1B in a
second sequence (“runtime sequence”), they may be per-
formed in any other sequence relative to one another. Acts
101-109 of the setup sequence are normally performed
before acts 141-149 of the runtime sequence.

More specifically, in an act 101 (FIG. 1A), computer(s)
200 prepare and transmit one or more screen(s) to receive
search criteria to identify templates of requests. For
example, screen 301 illustrated in FIG. 3 A enables receipt of
search criteria in the form of a type of requests (e.g.
workflow name 351) and/or template name (e.g. field 352).
Thereafter, in act 102 (FIG. 1A), computer(s) 200 prepare
and transmit a list of names of templates (e.g. list 161 in
FIGS. 1C and 1F, list 302 in FIG. 3A) of request. Subse-
quently, in act 103 (which may be similar or identical to act
231 described below in reference to FIG. 2), computer(s)
200 receive a selected name of a request template, e.g.
identifier of a request 162 (FIGS. 1C, 1F), name 302A (FIG.
3A).

Thereafter, to enable configuration of the selected request,
in act 104 (FIG. 1A), computer(s) 200 prepare and transmit
one or more screen(s) (e.g. screen 162A in FIG. 1F, screen
305 in FIG. 3B) to receive selections identifying names of
attributes (e.g. names #HDR_1, and #HDR_3 in FIG. 3B)
that are selected (e.g. by a developer) from a larger plurality
of names (e.g. see group 306 in FIG. 3B). The larger
plurality of attribute names includable in a request header
are extracted from columns of one or more tables of a
relational database, e.g. tables 236 described below. Selec-
tions made in the just-described screen(s), e.g. screen 305,
are received in computer(s) 200 e.g. as attribute identifiers
162B in FIG. 1F, and stored in configuration information e.g.
in configuration tables 1120 (FIG. 1F) of the relational
database, for subsequent use in runtime operation 140 in
generating a header of the request being configured in
operation 130 (FIG. 1A).

Thereafter, in act 105 (which may be similar or identical
to act 233 described below), computer(s) 200 prepare and
transmit one or more screen(s) (e.g. screen 163 in FIGS. 1C
and 1F, screen 308 in FIG. 3C) to receive a set of identifiers
(also called “region identifiers”) of one or more regions (also
called line item groups) that are includable in a content of
the request. Configuration information received via the
just-described screen(s), e.g. screen 308 (FIG. 3C), is
received in computer(s) 200 e.g. as region identifiers 164
shown in FIGS. 1C, 1F and stored, e.g. in the relational
database, for subsequent use in runtime operation 140 in
generating content of the request being configured in opera-
tion 130.

Thereafter, an act 106 (FIG. 1A) is repeatedly performed,
for each includable region identified in act 105 (described
above), e.g. similar or identical to act 234 described below.
Specifically, in act 106 (FIG. 1A), computer(s) 200 receive
information on a rule action pair corresponding to each
includable region, wherein the rule action pair information
comprises a definition of a rule and an identifier of a specific
software code (or software code identifier) to be executed

US 9,465,607 B2

5

when the rule is satisfied. Rule action pairs may be identified
in act 106 e.g. as described below in reference to buttons
313A and 314A, shown in a single row (also called “display
row”) for a region (or line item group) 310A (FIG. 3C).
Information on a rule action pair is received in computer(s)
200 for each includable region, and stored in configuration
information, e.g. in the relational database, for subsequent
use in runtime operation 140 in generating content of the
request being configured in operation 130.

Act 106 may include an act 107 that is repeatedly per-
formed for each rule, wherein computer(s) 200 prepare and
transmit one or more screen(s) (e.g. see subscreen 315 in
FIG. 3D) to receive for each rule in a rule action pair being
identified in act 106 (FIG. 1A), a definition of the rule which
includes user input on selections identifying an operator, a
type of operand, an operand and a constant, e.g. as described
below. Furthermore, act 106 may also include a group of acts
108A-108C that are repeatedly performed for each action in
a rule action pair, wherein computer(s) 200 prepare and
transmit one or more screen(s) to obtain information needed
to perform the action.

Specifically, in act 108A, computer(s) 200 may prepare
and transmit screen(s) to receive, for each action in a rule
action pair, selections identifying an application module, an
object within the application module, and to receive as the
identifier of the specific software code, a method (also called
“action programmatic method”, or simply “programmatic
method”) 320B within the object 320D, as illustrated by
screen 317 shown in FIG. 3E, described below. Moreover, in
act 108B, computer(s) 200 may prepare and transmit
screen(s) to receive, a mapping between input parameters of
a specific software code (e.g. identified in act 108A), and
attributes of the request, e.g. as illustrated by table 323
shown in FIG. 3H, described below.

Furthermore, in act 108C, computer(s) 200 may prepare
and transmit screen(s) to receive selections identifying
names of attributes that are selected from a larger plurality
of names of attributes output by an action programmatic
method, and thus available for inclusion in content of a
region in the request being configured (in a manner similar
to attribute names selected for inclusion in the request’s
header, as described above in reference to act 104). Screens
of'act 108C used for selection of attribute names may be e.g.
as illustrated in FIG. 3F (described below). In act 108C, the
larger plurality of names may also be extracted from col-
umns one or more tables of the relational database and/or
based on output attributes of the specific software code
identified in act 108A. Also in act 108C, computer(s) 200
may receive a specific sequence of the names selected for
inclusion in the request’s content (also identified in act
108C), e.g. as illustrated in column 323C in FIG. 3F and the
sequence may be changed as described below in reference to
FIG. 3G and button 319.

Act 107 for each rule and the group of acts 108 A-108C for
each action may be performed in any sequence relative to
one another, so long as each rule and each action is specified
in each rule action pair received in act 106. Note that a single
action may be used in common with multiple rules, e.g.
depending on the rule action pairs of the request being
configured.

Before, during, or after act 106 (depending on selection
by a developer), an act 109 (FIG. 1A) may be performed by
computer(s) 200 to receive another sequence, in which two
or more rules are to be evaluated, relative to one another, e.g.
when multiple rule action pairs are defined in act 106, for the
content of a single request. For example see sequence
numbers 312A, 312B in FIG. 3C, described below.

20

25

40

45

60

6

Acts 101-109 (FIG. 1A) enable developers to declara-
tively implement different types of requests, by configura-
tion in operation 130, following which runtime operation
140 performs one or more of acts 141-149 (FIG. 1B) to
automatically generate requests of these different types, e.g.
in response to messages from mobile device 170. Specifi-
cally, in act 141, computer(s) 200 may receive from a mobile
device (e.g. mobile device 170 in FIG. 1C), a message that
identifies a type of requests. The just-described request type
identifies one or more templates that are used by a module
in application software, to obtain and store in table(s) of a
relational database, data related to requests transmitted to the
module by computer(s) and/or mobile devices operated by
humans (e.g. requesters). The just-described data related to
requests is used by computer(s) 200 in runtime operation
140 to prepare header and/or content of requests, and to
receive user input on each request indicative of at least one
of'approval or disapproval. The just-described data related to
requests may be received by modules in application software
in any manner, e.g. as user input received from requesters,
followed by the modules storing in table(s) of the relational
database, the just-described data and/or data derived there-
from (e.g. by execution of software code in the modules).

Accordingly, in act 142, computer(s) 200 retrieve from
one or more database tables, information on requests that are
instantiated by the module(s), based on a template that is at
least partially identified by the request type (e.g. by request
type (or workflow name) 351 in FIG. 3A). Specifically, in
some embodiments, a request type (e.g. workflow name) of
“Requisition” may completely identify a single request
template such as the template of name 302A (e.g. labeled as
“Approve Requisition” in FIG. 3A). However, in other
embodiments a request type only partially identifies request
templates, and in these embodiments multiple request tem-
plates are retrieved in act 142 (e.g. templates identified in list
302 which are named “Approve Requisition”, “Requisition
Approval Reminder”, “Unable to Reserve CLM” and
“Document Manager Failed” as shown in FIG. 3A). There-
after, in act 143, computer(s) 200 prepare and transmit to
mobile device 170, a summary (e.g. a list) of requests that
are instantiated in the relational database, and identified
based on the request type. Examples of request summaries
are illustrated in (a) FIG. 8B for expense requests, (b) FIG.
8E for requisition requests, and (c¢) FIG. 8H for purchase
order requests.

Thereafter, in act 144, computer(s) 200 receive from
mobile device 170, a message that identifies a specific
request in the summary (e.g. list). Then, in act 145,
computer(s) 200 evaluate at least one rule in a rule action
pair corresponding to at least one includable region identi-
fied in a set of region identifiers(s). The set of region
identifiers are retrieved from configuration information,
which may be e.g. retrieved from the relational database
based on a template used to generate the request. When one
or more evaluated rule(s) is/are found to be satisfied, one or
more region(s) corresponding thereto are identified in com-
puter(s) 200, as being renderable, in displaying the specific
request.

In certain configurations (“first” configurations), there is
only one rule (“first rule”) that corresponds to a region (“first
region”) of a request, and there is only one region (“first
region”) that is identified for the request (in the set of
regions), and this region (“first region™) is identified as
renderable when the rule (“first rule”) is found to be satis-
fied. In other configuration (“second” configuration), mul-
tiple rules (“second rules”) are configured for a single region
(“second region”) of a request, and there is only one region

US 9,465,607 B2

7

(“second region”) identified for the request (in the set of
regions), and this region (“second region™) is identified as
renderable, when any one of the multiple rules (“second
rule”) is found to be satisfied. In still other configurations
(“third” configurations), several rules (Ni “third rules™) are
configured for each region i (i-th “third region”) of a request,
and there are multiple regions (e.g. O<i<m “third regions™)
identified for the request (in the set of regions). In the third
configurations, when any one of the third rules (e.g. one of
Nj third rules) is satisfied for a specific third region (e.g. j-th
third region), that specific third region (e.g. the j-th third
region) is identified as being renderable In the third con-
figurations, more than one region (e.g. i-th and j-th regions)
may be identified as being renderable, when a corresponding
rule is found to be satisfied (e.g. one of the Ni third rules is
found to be satisfied, and one of the Nj third rules is also
found to be satisfied).

Accordingly, for each to-be-rendered region identified in
act 145, computer(s) 200 perform acts 146 and 147, as
follows. In act 146, computer(s) 200 execute at least a
specific software code that is identified in configuration
information, in a rule action pair corresponding to the
to-be-rendered region identified by evaluation (in act 145).
The specific software code, on execution, returns one or
more rows (“first rows”, or “data rows”), each row including
multiple name value pairs. In embodiments wherein the first
rows are retrieved from a relational database, the names in
the multiple name value pairs are implemented as columns
in one or more tables of the relational database.

Thereafter, in act 147, computer(s) 200 prepare at least a
portion of content of the specific request identified in act
144, by formatting the multiple name value pairs that were
identified in act 146 into corresponding multiple lines (“dis-
play lines™) in a row (“second row”, or “display rows”) of
a to-be-rendered region identified in act 145. In the just-
described multiple display lines, each name value pair
among the multiple name value pairs is included in a single
display line of the to-be-rendered region. As noted in the last
sentence of the previous paragraph, the just-described mul-
tiple name value pairs may be received in a single data row,
corresponding to multiple columns in a database table, from
which the multiple name value pairs are extracted. The
number of second rows (“display rows”) which are prepared,
for a single to-be-rendered region in act 147, depends on a
corresponding number of first rows (“data rows”) that are
returned by execution of the specific software code (which
in turn may correspond to, e.g. rows (also called “database
rows”) returned by execution of a database query). More-
over, for use in display by mobile device 170, multiple lines
(“display lines”) within each row (“display row™) of the
to-be-rendered region are sequenced relative to one another,
in a specific sequence that was received as user input from
one or more developers, e.g. in act 108C of setup operation
130. For example, see the “attribute order” with sequence
numbers 1-8, in the corresponding eight display lines, such
as lines 814A-814H in FIG. 8G (in turn corresponding to
eight XML statements 601A-601H, starting with the XML
tag <attribute . . . > and ending with the XML tag </attri-
bute>, all within a single display row 601 in FIG. 6B),
whereby the eight display lines 814A-814H are sequenced
relative to one another in the specific sequence, which is
received during setup operation 130 as user input from a
developer, as shown in FIG. 3F.

After content for each to-be-rendered region has been
generated (by performing acts 146 and 147, and repetition
thereof if necessary), computer(s) 200 transmit to the mobile
device 170, a header and content of the specific request

20

30

40

45

50

8

identified in act 144, followed by act 149 in which user input
is received and stored, e.g. in the relational database. There-
after, computer(s) 200 may return to act 144 (described
above).

In several aspects of described embodiments, one or more
computers 200 process a request 177 (FIG. 1C) by assem-
bling content to be rendered therein. Request 177 is typically
created by a software application 150 (FIG. 1C) in the one
or more computer(s) 200 each of which may be imple-
mented as computer 1000 including one or more hardware
components as illustrated in FIG. 7A and/or software com-
ponents illustrated in FIG. 7B and discussed below. Request
177 is typically created by application module(s) 151, 152
(FIG. 2) of software application 150 in computer(s) 200 in
response to user input received by client computer(s) 182,
186 (FIG. 1C), e.g. from requester(s) 181, 185. For example,
requester 181 may use a desktop computer 182 to create a
request 183 (FIG. 1C), e.g. for reimbursement of expenses
by use of a reimbursement module 151 which is a business
application in enterprise resource planning (ERP) software
150 executed in one or more computers 200.

Similarly, requester 185 may use a desktop computer 186
to create another request 187 (FIG. 1C), e.g. for making a
requisition, by use of a requisition module 153 in ERP
software 150 (implementing an application of some embodi-
ments). Requests 183 and 187 may be created via browsers
(such as INTERNET EXPLORER or FIREFOX) in com-
puters 182 and 186 that display screens (not shown) gener-
ated by corresponding modules 151 and 152 of software
application 150, in the normal manner. Each of computers
182 and 186 may be implemented as computer 1000 includ-
ing one or more hardware components as illustrated in FIG.
7A and/or software components illustrated in FIG. 7B and
discussed below.

Requests 183 and 187 are stored by execution of software
application 150 in a relational database 1120 as data in
corresponding rows (“database rows”) in one or more tables,
such as one database row for a request 177. The one or more
computers 200 may assemble request 177 to include a
header 173 to be displayed initially (FIG. 1D), followed by
content in the form of one or more groups 174 of line items
174A-174N (FIG. 1E). An approver 176 (FIG. 1C) may
select request 177 for display on mobile device 170 in a
normal manner, e.g. by selecting it in a list (see FIGS. 8B,
8E and 8H) of multiple requests requiring approval. Mobile
device 170 may be implemented to include specialized
circuitry such as GPS circuitry, cellular phone circuitry and
sensors, as well as computer 1000 in turn including one or
more hardware components as illustrated in FIG. 7A and/or
software components illustrated in FIG. 7B and discussed
below.

When selected, header 173 of request 177 may initially be
displayed on mobile device 170 (as shown in FIG. 1D).
Header 173 includes one or more attributes in the form of
name value pairs. In the example illustrated in FIG. 1D,
header 173 includes attributes specific to a module that
created the request 177, such as attribute 173A with the
name “Expense Report for” and value Horton, Conor, attri-
bute 173B with the name “Individual’s Cost Center” and
value 740, attribute 173C with the name “Expense Report
Total” and value 295.00 USD, attribute 173D with the name
“Purpose” and value “Expense Report Testing 15”. In addi-
tion, header 173 includes attributes that are generic to
requests (e.g. independent of which module created the
request 177), such as attribute 173K with the name “From”
and the value “Horton, Connor”, attribute 173L with the
name “To” and the value “Brown, Casey”, attribute 173M

US 9,465,607 B2

9

with the name “Sent” and the value “May 21, 2014”,
attribute 173N with the name “Due” and the value “May 26,
20147, attribute 1730 with the name “ID” and the value
“3076482”.

Header 173 shown in FIG. 1D includes an attribute 173F
with the name “Expense Report Details” and the value is a
link that is operable by user input to display a screen
displaying a group 174 of line items (also referred to as a
region), with each line item being indicative of a specific
expense as illustrated in FIG. 1E. Header 173 shown in FIG.
1D includes another attribute 173G with the name “Action
History” and the value is another link that is operable by user
input to display another group of line items (also referred to
as another region, not shown), which identify an action
previously taken on the current request 177, and may include
a time stamp, showing a specific date and a specific time (on
the specific date), when the action was taken. Similarly, an
optional header attribute 173H identifies yet another group
of line items (also referred to as yet another region) also
selectable by user input, to reveal one or more attachments
e.g. a restaurant receipt which may be included in a request
(e.g. work item) by a requester (e.g. employee). Each group
of line items (or each region) may include just one line item,
or multiple line items. In some embodiments, a group (or
region) in which there are no line items is not transmitted by
runtime operation 140 to mobile device 170 (i.e. effectively
non-existent). Accordingly, the just-described last three
header attributes 173F, 173G and 173H identify three groups
of line items (or three regions) of request 177.

Individual line items 174A . . . 1741 . . . 174] . . . 174N
(FIG. 1E) are transmitted by runtime operation 140 to
mobile device 170, e.g. as content of request 177. Hence,
when header attribute 173F is selected by user input touch-
ing the panel thereof, a header displayed by mobile device
170 in FIG. 1D (e.g. displayed based on receipt of XML to
render a header screen as shown in FIG. 6A) is replaced by
a display of individual line items 174A-174N identifying
corresponding expenses, as shown in FIG. 1E (e.g. displayed
based on receipt of XML to render a details screen as shown
in FIG. 6B). For illustrative purposes, only four line items
are shown in FIG. 1E, although there may be any number of
such line items. As illustrated in FIG. 1E, each of line items
174A-174N includes several name value pairs. For example,
line item 1741 has four name value pairs, as follows: a first
name “Expense Type” and a first value “Car Rental”, a
second name “Justification” and a second value “Car rental
expenses”, a third name “Reimbursable Amount” and a third
value “34.00 USD”, a fourth name “Date” and a fourth value
“Jun. 11, 2014.” Values in each of the just-described four
name value pairs are received by reimbursement module 151
(FIG. 1C), as user input in a request 183 from employee 181,
and stored in database 1120 as attributes.

Thus, numerous such line items are present in database
1120, and the specific line items 174A-174N which are
selected by runtime operation 140 (FIG. 1C) for inclusion in
content 174 of a request 177 is configurable in accordance
with the invention, by a rule 165A (FIG. 1C), as noted
above. Rule 165A is configurable by user input from a client
computer 160 of a human (e.g. developer 166) and is
associated with an identifier 165B (FIG. 1C) of a software
code to be executed to render a group of one or more line
items (also called “regions”) when rule 165A is satisfied.
Rule 165A and software code identifier 165B together form
a rule action pair 165 (FIG. 1C), which corresponds to a line
item group (e.g. group 173F in FIG. 1D) that is includable
in a request 177. Specifically, in a setup operation 130, a
framework 100 (FIG. 1C) receives from developer 166 via

25

30

35

40

45

10

his/her client computer 160, user input identifying configu-
ration information for each request 177 that may be dis-
played on mobile device 170. The configuration information
identifies one or more line item groups 173F that is/are
includable in a request 177 and one or more corresponding
rule action pairs 165 to be used in conditionally rendering
the includable line item groups 173F. Client computer 160
may also be implemented as computer 1000 including one or
more hardware components as illustrated in FIG. 7A and/or
software components illustrated in FIG. 7B and discussed
below.

Thereafter, in a runtime operation 140, on receipt of a
request identifier 172 (FIG. 1C) identifying a specific
request 177 (e.g. selected by user input from among a list of
requests), framework 100 evaluates the rules corresponding
to each line item group that is includable in the identified
request 177, to identify one or more line item groups 174
which are to be rendered (when their corresponding rule is
found to be satisfied). Then, for each to-be-rendered line
item group 174, framework 100 executes (or initiates execu-
tion of) a software code identified in the rule action pair 165,
to obtain from a database 1120 one or more line items
174A-174N in group 174, each retrieved line item including
one or more name value pairs. The name value pairs in each
retrieved line item 1741 are transmitted as content of request
177, in addition to a header 173, to obtain user input
indicative of approval or disapproval of request 177.

Examples of tables in relational database 1120 are of two
types, namely (a) pre-existing tables namely Work Item
Templates, Workflow Attributes, and Work Items, and (b)
configuration tables namely Configured Work Items, Header
Attributes, Result Attributes, Line Items, Rules & software
codes, Line Item attributes, and programmatic method
parameters mapping. For example, attributes (such as Work-
flow Attributes, Header Attributes, Result Attributes) may be
stored as name value pairs, wherein the names in name value
pairs are implemented as columns in a relational database
table, and the values in the name value pairs may be stored
in the rows (“database rows™) of the relational database
table, in database 1120.

A work item is just one illustrative example of a request
183 (FIG. 1C) used in a software application 150 (FIG. 1C)
which happens to be implemented as enterprise resource
planning (ERP) software illustrated in FIG. 1F. As another
example, software application 150 (FIG. 1C) may be imple-
mented in some embodiments as gaming software (not
shown), wherein a request 183 may contain a token (not
shown) submitted by a team member (who is a requester) to
a captain (who is an approver), and the token may identify
a specific weapon in an armory (not shown) when the
specific weapon is needed by the team member for use in the
game only. Thus, FIG. 1C generically illustrates several
embodiments in accordance with the invention, while FIG.
1F more specifically illustrates in greater detail certain
specific exemplary embodiments.

Although desktop computer clients 181 and 186 are
shown for illustrative purposes in FIG. 1C as being used by
employees 181 and 185 to interface with modules 151 and
152 to generate data for work items (based on requests 183,
187), such an employee 185 may instead use a mobile device
189 to perform the same acts, as illustrated in FIG. 1F.
Similarly, desktop computer 160 in FIG. 1C is used by
developer 166 to interface with framework 100 to provide
configuration information for conditional execution of a
specific software code (when an associated rule is met) to
process a work item based on line items includable therein.

US 9,465,607 B2

11

Such a developer 166 may instead use a mobile device 167
to perform the same acts, as illustrated in FIG. 1F.

Moreover, although request 177 transmitted by frame-
work 100 to mobile device 170 includes two portions 173
and 174 thereof in a single message as illustrated in FIG. 1C,
such portions may be transmitted individually as illustrated
in FIG. 1F. Specifically, a request’s line item group 174 may
be transmitted by framework 100 to mobile device 170 in
response to receipt of a region identifier 178 that identifies
the line item group 174. Region identifier 178 (FIG. 1F) may
be received by mobile device 170 as one value in the name
value pairs received in header 173, and this one value
identifies line item group 174 in a link operable by user input
(as described above in reference to FIG. 1D). Also, header
173 is optional and may or may not be transmitted by
framework 100 to mobile device 170 prior to transmission of
a work item’s line item group 174 as content therein.
Accordingly, numerous such embodiments in accordance
with the invention will be readily apparent in view of this
detailed description.

Some embodiments of computer(s) 200 perform setup
operation 140 after performance of one or more legacy
operation(s), such as operation 210 (FIG. 2) to install one or
more applications, each of which may include one or more
software code(s), such as reimbursement module 151 and
requisition module 153 (FIG. 1C). Operation 210 creates
(and/or receives) templates 211 (FIG. 2) to be used in
instantiating work items, during execution of module(s) 151,
152. Templates 211 are identified by unique names (also
called work item template names), and in several embodi-
ments it is one of these names that is received from devel-
oper’s computer 160 (FIG. 1C) in an act 231 (FIG. 2) by
setup operation 130. In such embodiments, prior to act 231,
setup operation 130 transmits to developer’s computer 160
(FIG. 10), a list 302 (FIG. 3A) of names of work item
templates e.g. as illustrated by screen 301 (FIG. 3A). Tem-
plates 211 may be partially identified by workflow names
corresponding to respective modules, e.g. workflow name
351 of value “Requisition” (FIG. 3A) identifies one or more
templates that are used by requisition module 153 in ERP
software 150 (to obtain and store in a database, data related
to work items). Developer 166 operates a mouse 201 (FIG.
3A) to place cursor 303 on a button 304A to identify the
work item template to be configured and on clicking the
mouse 201, developer’s computer 160 transmits work item
template name 302A to setup operation 130, which is
received in act 231 as noted above.

List 302 (FIG. 3A) may be generated by setup operation
130 (FIG. 2) in response to a search, e.g. on a workflow
name “Requisition” as illustrated in FIG. 3A. A workflow
name identifies a process (also called “business process™)
that is followed by an instantiation of a work item template
(also called work item) during its lifecycle, from creation to
completion, including interactions with one or more humans
(e.g. employees 181, 185) and/or other processes (e.g. of
modules 151, 153). A work item’s interactions with business
processes and/or humans may create and/or complete other
work items. A search to generate list 302 may identify other
criteria, e.g. work item template’s name, also illustrated in
FIG. 3A. Thus list 302 may be generated in different ways
in different embodiments, and developer 166 selects a work
item name 302A identified in the search results list, and thus
template name 302A is received in act 231 (FIG. 2). Note
that in alternative embodiments, screen 301 may provide an
input box for developer 166 to provide user input (by typing
on a keyboard) in the form of a string of characters which
define a new template name for a work item.

20

40

45

55

12

In an act 232 of operation 130, identifiers (also called
“attribute identifiers”) of one or more attributes (“header
attributes”) 306A . . . 3061 . . . 306N in the template named
in act 231 are received for use in rendering the header of the
work item, on being selected by developer 166 as render-
able, e.g. by selection (in check boxes) from among a group
of attributes 306 in screen 305 as illustrated in FIG. 3B. The
group of attributes 306 may include one or more attributes
(such as the attribute with name “#FROM_ROLE”) that are
not selectable for inclusion, which are included in the work
item’s header 173 by default. Each of the just-described
attributes in group 306 includes both an internal name (e.g.
“#FROM_ROLE”) and a display name (e.g. “From Role”).
It is the just-described display name which is included as the
name in a name value pair, when request 177 is processed to
generate header 173 (FIG. 1C) which is returned by runtime
operation 140.

Also, act 232 may receive identifiers (also called “attri-
bute identifiers”) of additional attribute(s) (“result attri-
butes”) 307A and 307B, on being identified by developer
166 as being associated with corresponding labels, by selec-
tion in drop-down list boxes of screen 305 (FIG. 3B). It is
the just-described result attributes 307A and 307B which
contain an approver’s response 175 (FIG. 1C) to approve or
reject the work item, e.g. by touching button 1731 or button
17317 displayed on mobile device 170 (FIG. 1D). Note that
act 232 is optional because in some embodiments the
information described above as being received in act 232 is
not accessible to developer 166, e.g. hard coded or pre-
configured ahead of time.

After receipt of a work item template’s name in act 231
(FIG. 2) and optional receipt of header and result attributes
in act 232, another act 233 is performed in setup operation
130 to receive a set of identifiers (also called “region
identifiers”) of one or more groups 310A, 310B (FIG. 3C) of
line items that are includable in the work item template
identified in act 231. Groups (also called ‘regions’) 310A,
310B may be identified by corresponding names 311A,
311B, e.g. “Requisition_Lines_Yes” may be received by
user input (e.g. via a keyboard) as name 311A in a field of
a line in screen 308 (FIG. 3C). Screen 308 is supplied to
client computer 160 by setup operation 130, and each of the
lines for corresponding groups 310A, 310B (FIG. 3C) may
be generated by developer 166 clicking on a new button 309
in screen 308. Each of the lines for groups 310A, 310B in
screen 308 identifies, in addition to the just-described name,
a sequence number 312A, 312B according to which the
groups are to be processed, relative to one another.

For each of groups 310A and 310B that are identified in
act 233, setup operation 130 receives at least one rule action
pair in an act 234. Certain embodiments enable a single line
item group to be associated with multiple rule action pairs,
so that the same line item group may be rendered differently
in a request (e.g. work item) 177 by performance of different
actions when different rules are satisfied. In such embodi-
ments, the names in column 311C need not be unique, i.e.
the same name of a specific line item group may occur
multiple times when multiple rule action pairs are associated
therewith. However, some embodiments limit each line item
group to being associated with only one rule action pair, so
that each name in column 311C is required to be unique.

Moreover, a rule action pair received in act 234 may be
received from client computer 160 either in a common
message in which the set of region identifiers of one or more
groups 310A, 310B are also received in act 233 or in
separate messages depending on the embodiment. In some
embodiments, developer 166 may click on a button 313A

US 9,465,607 B2

13

shown in screen 308 in the line for group 310A (FIG. 3C) to
define a rule by identifying an operator, an operand and a
constant as illustrated in FIG. 3D and described below. The
developer 166 may further click on another button 314A in
the same line for group 310A (FIG. 3C) to define an action
to perform by identifying a specific software code, as
described below in reference to FIGS. 3E-3H.

In some embodiments, developer 166 clicks on button
313A (FIG. 3C) in a rule column of screen 308 to obtain a
screen 315 (FIG. 3D). Screen 315 is displayed in an illus-
trative embodiment as a portion of screen 308 at the bottom
thereof, and includes an first field 315A to receive user input
identifying an operand, a second field 315B to receive user
input identifying an operator, and a third field 315C to
receive user input identifying a constant. The constant is
received in field 315C as a string of characters (e.g. via a
keyboard). The operator is received in field 315B as a
selection from among a set of predefined operators that are
displayed in a drop-down list box (not shown) which is
displayed by clicking an arrow icon on the right side of field
315B. The operand is received in field 315A also as a
selection from among a set of operands that are displayed in
another drop-down list box (not shown) which is displayed
by clicking the arrow icon on the right side of field 315A.

The set of operands which are displayed in field 315A
(FIG. 3D) for selection by developer 166 depend on a type
of operand identified in another field 315D. The type of
operand is received in field 315D also as another selection
from among a set of operand types that are displayed in yet
another drop-down list box which is displayed by clicking
the arrow icon on the right side of field 315D. As shown in
FIG. 3D, the set of operand types includes “attribute” as one
operand type and “software” as another operand type. Selec-
tion of the “attribute” operand type in field 315D (FIG. 3D)
results in the set of attributes being made available for
selection in field 315A to include, in some embodiments:
attributes related to the work item, attributes related to a
work flow of the work item, and optionally attributes related
to a module that created the work item.

Selection of the “software” operand type in field 315D
results in field 315A being available for user input identi-
fying the operand to be output of a software code (“rule-
operand software code”), such as (1) output of a method
(“rule-operand programmatic method”) in an application
(not shown) which may be expressed in any programming
language such as Java, C++, and/or (2) output of PL/SQL
code containing a query to a relational database which may
be expressed in the structured query language SQL. Sub-
screen 315 (FIG. 3D) includes a field 315E to receive user
input as a string of characters (e.g. via a keyboard) identi-
fying a name of rule 316, such as the name “Is Contractor
Requisition.” Although only one rule 316 is shown in table
315 in FIG. 3D for the line item group “Requisition_Line-
s_Yes”, multiple such rules may be configured in table 315
for the same line item group, and during runtime operation
140 whichever rule is satisfied that rule’s action is per-
formed.

In some embodiments, developer 166 clicks on button
314A (FIG. 3C) in software code column 314 of screen 308
to obtain a screen to identify an action to be performed, e.g.
by execution of a specific software code identified by button
314A which may be implemented as a database query
expressed in a structured query language (SQL) and/or any
other programming language, such as Java, PL/SQL or C++
identified in a screen 317 as described below. Note that the
specific software code (“action software code”) identified by
button 314A (FIG. 3C) which is to be executed in an action

10

15

20

25

30

35

40

45

50

55

60

65

14

(selected as shown in FIG. 3E) of a rule action pair is
different from another software code (“rule-operand soft-
ware code”) to be executed to obtain an output thereof which
forms an operand 315A of operand type 3157 labeled
“Software” within a rule 315 (FIG. 3D) in the rule action
pair. Thus, two software codes may be specified, one in the
rule (“rule-operand software code”) and another in the
action (“action software code”) of a rule action pair of some
embodiments.

A specific software code (“action software code™) to be
executed by computer(s) 200, to perform the action of a rule
action pair, may be selected by a developer to be a pro-
grammatic method (“action programmatic method”) in an
object of an application module, the application module
being selected from among a set of application modules
deployed in computer(s) 200, as follows. Screen 317 (FIG.
3E) includes a field 318 to receive user input identifying an
application module by name. For example, developer 166
may search (by clicking on a search icon located to the right
of field 318), to obtain a popup window (not shown) which
allows a search for application modules that have been
deployed in computer(s) 200. When a specific application
module is identified by a developer 166 making a selection
in field 318 e.g. by selecting the name of an application
module, screen 317 (FIG. 3E) is updated in a column 319A,
to show all data access objects that are included in the
specific application module identified in field 318. Devel-
oper 166 may select one or more objects in column 319A,
followed by clicking on button 319M to move the selected
objects to another column 319S. For example, in screen 317
of FIG. 3E, an object named “ReqlLinesNotificationsVO” is
received via column 319S (by setup operation 130) as a
selection from among a set of objects in column 319A.

Thereafter, developer 166 clicks on button 319L (FIG.
3E) to load the object(s) identified in column 319S into a
subscreen 320 shown at the bottom of screen 317, for use in
identifying a specific method therein (“action programmatic
method”) to be used to access data of a request (e.g. work
item). For this reason, the object(s) identified in column
319S are also referred to herein as data access objects.
Subscreen 320 (FIG. 3E) shows a software program’s iden-
tifier which is received via field 320A (by setup operation
130) as a selection from among a set of software programs
(e.g. Java classes) in selected object(s) 320D. Thereafter,
developer 166 may select a method (“action programmatic
method”) in field 320B, and the selected method’s name
forms an identifier of a specific software code to be executed
as the action in a rule action pair. In screen 317 of FIG. 3E,
an action programmatic method named “initQuery(2)” is
received via field 320B (by setup operation 130) as a
selection from among a set of action programmatic methods
available in the specific software program (e.g. Java class)
selected in field 320A.

When selection of a method (“action programmatic
method”) is received via field 320B, screen 317 of some
embodiments is updated to display a table 323 (FIG. 3F) in
which are displayed all the outputs of the selected method,
e.g. one line per output. Specifically, table 323 includes a
first column 323A which displays an internal name of an
output attribute of an action programmatic method 320B
selected in subscreen 320 (FIG. 3E) and available for
inclusion in a region to be displayed to an approver (e.g.
which can be rendered on mobile device 170), a second
column 323B which identifies for the just-described attri-
bute, a name to be rendered by mobile device 170 in a region
to be displayed to the approver (e.g. manager 176), a third
column 323C which identifies a sequence number that is

US 9,465,607 B2

15

used (by runtime operation 140 of framework 100) to output
the attributes in a sequence relative to one another, and a
fourth column 323D identifying the attribute as being ren-
dered (or not) in the work item 177.

Column 323B is used (by setup operation 130) to receive
user input in each line within table 323, in the form of a
string of characters typed by developer 166 on a keyboard,
the character string identifying the attribute’s name to be
rendered in the work item. Similarly, column 323D is used
(by setup operation 130) to receive user input (e.g. by
developer 166 clicking on a mouse) in each line identifying
whether or not the attribute is to be rendered (or otherwise
used) in the work item. For example, as illustrated in column
323D (FIG. 3F), in a third line of table 323 an attribute with
internal name “FundSourceNotKnown” is identified (to
setup operation 130) as not to be rendered by the absence of
a check mark, while other attributes in table 323 are iden-
tified as renderable by the presence of check marks in the
respective lines.

At this stage, screen 317 includes a reorder sequence
button 319 to be used by developer 166 to change the
sequence numbers shown in column 323C. Specifically, in
response to button 319 being clicked, a pop-up screen 319S
is displayed, listing the output attributes which are to be
rendered, and user input is received e.g. from developer 166
selecting an attribute in the listing and moving it from its
current position in the sequence, e.g. move attribute named
SuggSupplier upwards by clicking on button 319B.

Developer 166 may click on button 320C (FIG. 3G) to
obtain a subscreen 321 (shown in FIG. 3H) for use in
mapping input parameters of the method (“action program-
matic method”) selected in field 320B to one or more
attributes of the work item 177. Subscreen 321 includes a
first column 321A that identifies each input parameter of the
method in field 320B, a second column 321B identifies a
type of each input parameter, and a third column 321C to
receive user input in field 322 selecting an attribute of the
work item 177, via a drop down list box that identifies all
attributes of the work item. In screen 317 of FIG. 3H, an
attribute named “Document 1d” is received via field 322 (by
setup operation 130) as a selection from among the set of
attributes in the drop down list box. The developer’s selec-
tion is stored in a configuration table in the database, for use
in runtime operation. Specifically, the mapping of each
attribute in column 321C to a corresponding input parameter
in column 321A (FIG. 3H) is used in runtime operation to
pass a value of the attribute as the input parameter to the
method (“action programmatic method”) selected in field
320B (FIG. 3E).

Referring back to FIG. 2, during act 234 (as described
above), configuration information is received identifying
each line item group (e.g. region identifier) that is includable
in work item 177 and a corresponding rule action pair
associated therewith (e.g. rule action pair identifier), and this
configuration information is stored in tables 236 (FIG. 2) of
a relational database (also called “configuration tables™).
After act 234 is completed, an act 237 is performed in
operation 130, to check whether receipt of rules for each
group of line items includable in work item 177 has been
completed, and if not return to act 234 (described above).
When the answer in act 237 is yes, operation 130 performs
an act 238 to check if configuration information is to be
received for any more work items, and if so returns to act
231. When no more configuration information is to be
received, setup operation terminates.

Runtime operation 140 (FIG. 2) may start at any time after
configuration information is received for at least one work

10

15

20

25

30

35

40

45

50

55

60

65

16

item 177 by setup operation 130. Specifically, in an act 241,
runtime operation 140 receives a request identifying work
item 177 and uses a name of the work item to identify all line
item groups that are identified in configuration tables 236 as
being includable in the work item 177. Thereafter, runtime
operation 140 checks in an act 242 whether any rule, in a
rule action pair associated with an includable line item group
identified in act 241, is satisfied. If not, runtime operation
140 goes to act 243 to check if all rules (and correspondingly
all line item groups includable in the work item 177) have
been processed, and if not returns to act 242. When all rules
are found to have been processed in act 243, runtime
operation 140 returns to act 241 (described above).

In act 242 if the answer is yes, then runtime operation 140
goes to act 244. In act 244, runtime operation 140 executes
the specific software code which is identified as an action in
the rule action pair wherein the rule is found to be satisfied
(in act 242). On execution of the specific software code in
act 244, runtime operation 140 obtains one or more name
value pairs from pre-existing tables of a relational database
1120. Thereafter, runtime operation 140 performs an act 245
to transmit, as content of the work item 177, the name value
pairs which were retrieved in act 244.

In some embodiments, after an app for requests is started,
mobile device 170 receives a list of requests (e.g. work
items) from one or more computer(s) 200. Mobile device
170 of these embodiments displays the list in act 251 and
receives user input on a selected request (e.g. work item),
and this user input is transmitted to the one or more
computer(s) 200. Thereafter, in act 252, mobile device 170
of such embodiments receives and displays a header of a
selected request (e.g. selected work item), followed by act
253 in which mobile device 170 displays a selected line item
group within the selected request (e.g. selected work item).
After act 253, the mobile device 170 obtains a response (or
decision) on the request (e.g. work item), and in an act 254
the response is transmitted as manager 176’s user input to
the one or more computer(s) 200. Thus, in act 245, runtime
operation 140 in the one or more computer(s) 200 receives
the user input (e.g. from manager 176 in FIG. 1B) indicative
of the response (e.g. approval, disapproval) on the request
(e.g. work item) 177. Also in act 245, runtime operation 140
then stores the decision in the relational database 1120 and
then returns to act 241 (described above).

FIG. 4A-4C illustrate, in flow charts, acts performed by
one or more computers 200 by use of one or more processors
programmed with a sequence of instructions of software
stored in one or more memories, to implement setup opera-
tion 130 of framework 100, as follows. Specifically, in an act
411 (FIG. 4A), setup operation 130 transmits a screen of the
type illustrated in FIG. 3A to client computer 160 to enable
developer 166 to search for work item templates that have
been previously defined. Subsequently, in act 412, setup
operation 130 receives user input and builds search criteria
to query a table “Work Item Templates” preexisting in the
relational database 1120. Note that certain tables which are
described herein as preexisting in relational database 1120
are normally used by one or more business applications
installed in operation 210 that implement business logic
thereon, to create work items in the normal manner.

Thereafter, in act 413 (FIG. 4A), setup operation 130
transmits to client computer 160 a list of names of query-
matching Work Item Templates (as shown in FIG. 3A).
Then, in act 414, setup operation 130 receives user input as
the developer’s selection of a Work Item Template to set up
(see FIG. 3A). This is followed by an act 415 wherein setup
operation 130 stores the name of the developer-selected

US 9,465,607 B2

17

work item template in a configuration table named “Con-
figured Work Items” in the relational database 1120. The
just-described acts 411-415 are included in a procedure 410
performed by setup operation 130 to identify configured
work items.

Subsequently, for the selected work item template sub-
jected to procedure 410, setup operation 130 performs a
procedure 420 (FIG. 4B) to configure a header to be ren-
dered in a work item as follows. In act 421, setup operation
130 retrieves attributes from a table named “Workflow
Attributes” that is pre-existing in the relational database
1120. Thereafter, in an act 422, setup operation 130 trans-
mits to client computer 160 a screen (see FIG. 3B) with a list
of attributes specific to the work item and a field to select
each attribute as being renderable. Then, in an act 423, setup
operation 130 transmits to client computer 160 another list
of attributes for use in configuring how runtime operation
140 captures decisions by users, such as “approval” or
“disapproval”. Next, in act 424, setup operation 130 receives
user input from developer’s client computer 160 on the
just-described two lists and persist them to the respective
configuration tables “Header Attributes” and “Result Attri-
butes”.

In some embodiments, setup operation 130 performs a
procedure 430 (FIG. 4C) as follows. In act 431, setup
operation 130 transmits a screen to create line item groups
includable in Work Item (FIG. 3C). In act 432, setup
operation 130 receives user input identifying name(s) of line
item group(s). In act 433, setup operation 130 transmits a
screen to receive a rule for each identified line item group.
In act 434, setup operation 130 receives user input on the
rule identifying operator, operand type, operand and con-
stant (FIG. 3D). In act 435, setup operation 130 persists to
configuration table “Rules and Software Codes”, line item’s
name and rule. In act 436, setup operation 130 transmits an
option to select a type of a specific software code to be
executed, to obtain multiple name value pairs for rendering
in line item, e.g. type may be: a database query in SQL or
a method in a data access object (“action programmatic
method”).

In act 437, setup operation 130 transmits a screen to
identify a specific software code based on identifiers (also
called “software code identifiers™) of data access objects in
the Rules & software codes table, which are executed to
retrieve multiple name value pairs, e.g. implemented as
views on preexisting tables “Details Data Source”. In act
438, setup operation 130 receives via user input, Identifiers
of data access objects or SQL Text. In act 439, setup
operation 130 parses definitions of data access objects or
SQL Text. In act 440, setup operation 130 transmits a screen
to select for rendering, and reordering: attributes of data
access objects or SQL. In act 441, setup operation 130
transmits a choice to select a software program from among
a set of software programs in the application module or in a
data access object, and to select a method in the selected
software program (“action programmatic method”). In act
442, setup operation 130 receives & parses a selected
method (“action programmatic method”) and identifies input
parameters. In act 443, setup operation 130 transmits a
screen to map the input parameters to attributes of work item
(FIG. 3H). In act 444, setup operation 130 receives user
input identifying a correspondence between each input
parameter and a work item attribute, and stores this infor-
mation to configuration table “Method Parameters Map-
ping”.

FIG. 5A-5D illustrate, in flow charts, acts performed by
one or more computers 200 by use of one or more processors

10

15

20

25

30

35

40

45

50

55

60

65

18

programmed with a sequence of instructions of software
stored in one or more memories, to implement runtime
operation 140 of framework 100 in exemplary embodiments
as follows. In act 511, runtime operation 140 receives from
mobile device 170 of manager 176 a “Get Summary”
message. In act 512, runtime operation 140 retrieves from
the table “Configured Work Items” (see FIG. 4A, act 415)
the names of work item templates. In act 513, runtime
operation 140 fetches from preexisting table “Work Items”,
a Summary (or list) of Work Items which were instantiated
by use of the template named in act 512 (above). In act 514,
runtime operation 140 prepares an XML response of Sum-
mary. In act 515, runtime operation 140 returns a response
to mobile device 170. Acts 511-515 are performed in a
procedure 510 (FIG. 5A).

In act 521 (FIG. 5B), runtime operation 140 receives from
manager 176, a “Get Details” message. In act 522, runtime
operation 140 gets from the message, an Identifier of Work
Ttem. In act 523, runtime operation 140 retrieves from table
“Configured Work Items”, the following: Workflow Name
(or request type) and Work Item Template Name for the
work item ID (or request ID). In act 524 (FIG. 5B), runtime
operation 140 uses the Workflow Name and Work Item
Template Name to retrieve metadata from the following
configuration tables: (a) Header Attributes, (b) Result Attri-
butes, (¢) Line Items (d) Rules & software codes (e) Line
item attributes and (f) Method Parameters Mapping. In act
525, runtime operation 140 evaluates the rules & executes
the specific software codes to obtain line items, with each
line item including one or more name value pairs (also called
“details™). Specifically, in act 525, multiple name value pairs
are retrieved by executing data access objects, e.g. imple-
mented as views on preexisting tables named “Details Data
Source”. In act 526, runtime operation 140 uses metadata to
transform the multiple name value pairs into content of the
work item (e.g. by arranging them in a specific sequence of
multiple lines relative to one another, as specified in column
323C of FIG. 3F). In act 527, runtime operation 140
prepares XML with header attributes, result attributes, and
details.

Note that act 524 of some embodiments may be imple-
mented as illustrated in FIG. 5C by performance of acts
524 A-524C as follows. In act 524 A, runtime operation 140
retrieves attributes of the Work Item which are renderable in
the header from a configuration table “Header Attributes”.
Thereafter, in act 524B, runtime operation 140 retrieves the
Result Attributes for Actions in Work Item from configura-
tion table “Result Attributes”. Subsequently, in act 524C,
runtime operation 140 maps the work item’s line items, e.g.
by performing the acts 524C1-524C3 illustrated in FIG. 5D
as follows. In act 524C1, runtime operation 140 retrieves
from configuration table “Rules & software codes” one or
more Rules that apply to corresponding line item groups that
are includable in the current work item. Then, in act 524C2,
runtime operation 140 identifies data access objects contain-
ing the specific software code to be executed, also from
configuration table “Rules & software codes” corresponding
to each applicable rule identified in act 524C1. Finally, in act
524C3, runtime operation 140 identifies from configuration
table “Line Item Attributes”, the attributes in data access
object to be returned in response.

FIGS. 6A and 6B illustrate a work item’s header 173 (see
FIG. 1D) and a corresponding group 174 (see FIG. 1E) of
line items generated by runtime operation 140 of framework
100 by performance of act 527 in FIG. 5B, when a rule is
satisfied, for the first line item group 310A named “Requi-
sition_Lines_Yes” in FIG. 3C. FIGS. 6C and 6D illustrate a

US 9,465,607 B2

19

work item’s header 173 (see FIG. 1D) and a corresponding
group 174 (see FIG. 1E) of line items generated by runtime
operation 140 of framework 100 by performance of act 527
in FIG. 5B, when a different rule is satisfied, for the second
line item group 310B named “Requisition_Lines_No” in
FIG. 3C. Comparison of FIGS. 6B and 6D shows that the
name value pairs that are displayed are different, based on
corresponding different rules being satisfied, which result in
different regions being rendered (e.g. region id=1022 as
identified in the “body” portion of FIG. 6A is rendered in
FIG. 6B, whereas region id=1023 as identified in the “body”
portion of FIG. 6C is rendered in FIG. 6D).

The above-described associations between rules and cor-
responding identifiers (also called “software code identifi-
ers”) of specific software codes (which form rule action
pairs as noted above), as well as all the rules themselves are
stored in one or more configuration tables 236 (FIG. 2) by
one or more processors 1105 that are included in certain
embodiments of the one or more computers 200 of the type
described above. In several such embodiments, configura-
tion tables 236 and/or preexisting tables 249 (which hold
information related to work items) are stored in relational
database 1120 (FIG. 1C) that is accessed via commands in
a Structured Query Language (SQL) to a relational database
management system (RDBMS) 1130. A specific RDBMS
1130 which is executed by one or more processors 1105
depends on the embodiment, although some embodiments
use RDBMS software called “ORACLE Database 12¢”
available from Oracle Corporation of Redwood Shores,
Calif., USA. Such database(s) 1120 may additionally be
used to store work items, and/or multiple name value pairs
included as content of line items, depending on the embodi-
ment.

Computer(s) 1000 illustrated in FIGS. 7A and 7B may be
used to implement server computer(s) 200 described above,
and/or client computers 182, 186, 160 and/or mobile devices
170, 167 and 189. Specifically, computer(s) 1000 of some
embodiments include a bus 1102 (FIG. 7A) or other com-
munication mechanism for communicating information, and
one or more processor(s) 1105 coupled with bus 1102 for
processing information. Computer(s) 1000 use (as the
above-described memory) a main memory 1106, such as a
random access memory (RAM) or other dynamic storage
device, coupled to bus 1102 for storing information and
instructions (e.g. to perform act(s) of FIGS. 1A-1B, FIG. 2,
FIGS. 4A-4C and 5A-5D) to be executed by processor(s)
1105 (FIG. 1C). Main memory 1106 (FIG. 7A) also may be
used for storing temporary variables or other intermediate
information during execution of instructions (e.g. in mod-
ules 461-466) by processor 1105. Computer(s) 1000 further
include a read only memory (ROM) 1104 or other static
storage device coupled to bus 1102 for storing static infor-
mation and instructions for processor 1105, such as software
in the form of a browser. A storage device 1110, such as a
magnetic disk or optical disk, is provided and coupled to bus
1102 for storing information and instructions.

Computer(s) 1000 (FIG. 7A) may be coupled via bus 1102
to a display device or video monitor 1112 such as a cathode
ray tube (CRT) or a liquid crystal display (LCD), for
displaying information (e.g. via a browser) to a computer
user (e.g. user 411, 441 or 451) on the display 1112. An input
device 1114, including alphanumeric and other keys (e.g. of
a keyboard), is coupled to bus 1102 for communicating
information (such as user input, e.g. from any user 181, 185,
166, or 170) to processor 1105. Another type of user input
device is cursor control 1116, such as a mouse 201 (FIG.
3A), atrackball, or cursor direction keys for communicating

10

15

20

25

30

35

40

45

50

55

60

65

20

information and command selections to processor 1105 and
for controlling cursor movement on display 1112. This input
device typically has two degrees of freedom in two axes, a
first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane. In addition to display
device 1112, computer(s) 1000 may include a speaker (not
shown) as another output device for use by processor 1105
in interacting with any of user(s) 181, 185, 166, or 176.

As described elsewhere herein, execution of ERP soft-
ware 150 (FIG. 1C) in computer(s) 1000 (FIG. 7A) may be
implemented by one or more processor(s) 1105 executing
one or more sequences of one or more instructions that are
contained in main memory 1106. Such instructions may be
read into main memory 1106 from another non-transitory
computer-readable storage medium, such as storage device
1110. Execution of the sequences of instructions contained
in main memory 1106 causes processor 1105 to perform
setup operation 130 as illustrated in FIG. 1C and/or to
perform runtime operation 140 also illustrated in FIG. 1C. In
alternative embodiments, hard-wired circuitry may be used
in place of or in combination with software instructions in
modules 110 and 120 located in memory 1000 as illustrated
in FIG. 7B, to perform the corresponding operations 130 and
140 of FIG. 1C. Also, although framework 100 is included
in ERP software 150 as illustrated in FIG. 1C in some
embodiments, framework 100 may be implemented outside
ERP software 150 as illustrated in FIG. 7B.

The term “non-transitory computer-readable storage
medium” as used herein refers to any non-transitory storage
medium that participates in providing instructions to pro-
cessor 1105 (FIG. 7A) for execution. Such a non-transitory
storage medium may take many forms, including but not
limited to (1) non-volatile storage media, and (2) volatile
storage media. Common forms of non-volatile storage
media include, for example, a floppy disk, a flexible disk,
hard disk, optical disk, magnetic disk, magnetic tape, or any
other magnetic medium, a CD-ROM, any other optical
medium, punch cards, paper tape, any other physical
medium with patterns of holes, a PROM, and EPROM, a
FLASH-EPROM, any other memory chip or cartridge that
can be used as storage device 1110, to store program code in
the form of instructions and/or data structures and that can
be accessed by computer(s) 1000. Volatile storage media
includes dynamic memory, such as main memory 1106
which may be implemented in the form of a random access
memory or RAM.

Instructions to processor 1105 (FIG. 7A) can be provided
by a transmission link or by a non-transitory storage medium
from which a computer can read information, such as data
and/or code. Specifically, various forms of transmission link
and/or non-transitory storage medium may be involved in
providing one or more sequences of one or more instructions
to processor 1105 for execution. For example, the instruc-
tions may initially be comprised in a non-transitory storage
device, such as a magnetic disk, of a remote computer. The
remote computer can load the instructions into its dynamic
memory (RAM) and send the instructions over a telephone
line using a modem.

A modem local to computer(s) 1000 (FIG. 7A) can
receive information about a change to a collaboration object
on the telephone line and use an infra-red transmitter to
transmit the information in an infra-red signal. An infra-red
detector can receive the information carried in the infra-red
signal and appropriate circuitry can place the information on
bus 1102. Bus 1102 carries the information to main memory
1106, from which processor 1105 retrieves and executes the
instructions. The instructions received by main memory

US 9,465,607 B2

21

1106 may optionally be stored on storage device 1110 either
before or after execution by processor 1105.

Computer(s) 1000 (FIG. 7A) also includes a communi-
cation interface 1115 coupled to bus 1102. Communication
interface 1115 provides a two-way data communication
coupling to a network link 1120 that is connected to a local
network 1122. Local network 1122 may interconnect mul-
tiple computers (as described above). For example, commu-
nication interface 1115 may be an integrated services digital
network (ISDN) card or a modem to provide a data com-
munication connection to a corresponding type of telephone
line. As another example, communication interface 1115
may be a local area network (LAN) card to provide a data
communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation,
communication interface 1115 sends and receives electrical,
electromagnetic or optical signals that carry digital data
streams representing various types of information.

Network link 1120 (FIG. 7A) typically provides data
communication through one or more networks to other data
devices. For example, network link 1120 may provide a
connection through local network 1122 to a host computer
1125 or to data equipment operated by an Internet Service
Provider (ISP) 1126. ISP 1126 in turn provides data com-
munication services through the world wide packet data
communication network 1124 now commonly referred to as
the “Internet”. Local network 1122 and network 1124 both
use electrical, electromagnetic or optical signals that carry
digital data streams. The signals through the various net-
works and the signals on network link 1120 and through
communication interface 1115, which carry the digital data
to and from computer(s) 1000, are exemplary forms of
carrier waves transporting the information.

Computer(s) 1000 (FIG. 7A) can send messages and
receive data, including program code, through the
network(s), network link 1120 and communication interface
1115. In the Internet example, a server 1100 might transmit
information retrieved from RDBMS database through Inter-
net 1124, ISP 1126, local network 1122 and communication
interface 1115. The sequences of instructions for performing
the operations 130, 140 of FIG. 1C and/or one or more acts
illustrated in FIGS. 1A-1B, 2, 4A-4C and 5A-5D may be
executed by processor 1105 as these instructions are
received, and/or stored in storage device 1110, or other
non-volatile storage for later execution. In this manner,
computer(s) 1000 may additionally or alternatively obtain
instruction sequences and any related data in the form of a
carrier wave.

FIG. 7A is a very low-level representation of many
hardware components of one or more of computer(s) 1000,
which may be used to implement computer(s) 200 to per-
form acts described above in reference to FIGS. 1A-1B, 2,
4A-4C and SA-5D. Several embodiments have one or more
additional software components in main memory 1106 as
shown in FIG. 7B. In addition to main memory 1106,
computer(s) 1000 may include one or more other types of
memory such as flash memory (or SD card) and/or a hard
disk and/or an optical disk (also called “secondary
memory”) to store data and/or software for loading into
memory 1106 (also called “main memory”) and/or for use
by processor(s) 1105. In some embodiments, computer(s)
1000 of FIG. 7A implements a relational database manage-
ment system 1130 to manage data in one or more tables 236,
249 of a relational database 1120 of the type illustrated in
FIG. 7B. Such a relational database management system
1130 may manage a distributed database system that

10

15

20

25

30

35

40

45

50

55

60

65

22

includes multiple databases, each table being stored on
different storage mechanisms.

In some embodiments, the multiple databases are made to
appear as a single database. In such embodiments, processor
1105 can access and modify the data in a relational database
1120 via RDBMS 1130 that accepts queries from various
software codes e.g. action programmatic method 320B (FIG.
3E) in conformance with a relational database language, the
most common of which is the Structured Query Language
(SQL). The commands are used by processor 1105 of some
embodiments to store, modify and retrieve configuration
information and/or content of line items as rows of data
(“database rows”) from tables in relational database 1120.

Relational database management system 1130 further
includes output logic that makes the data in a database table
available to a user via a graphical user interface that gen-
erates a screen on a video monitor display 1112. In one
example, the output logic of computer(s) 1000 provides
results via a web-based user interface that depicts in a
browser, information related to work items as illustrated in
any one or more of FIGS. 3A-3G. Additionally and/or
alternatively, screens responsive to a command in a com-
mand-line interface and display on a video monitor may be
generated by computer(s) 1000.

In some embodiments of computer(s) 1000, functionality
in the above-described operations or acts of FIGS. 1A-1B, 2,
4A-4C and 5A-5D is implemented by processor 1105
executing software in memory 1106 of computer(s) 1000,
although in other embodiments such functionality is imple-
mented in any combination of hardware circuitry and/or
firmware and/or software in computer(s) 1000. Depending
on the embodiment, various functions of the type described
herein may be implemented in software (executed by one or
more processors or processor cores) or in dedicated hard-
ware circuitry or in firmware, or in any combination thereof.
Accordingly, depending on the embodiment, any one or
more of the means for performing operations or acts of
FIGS. 1A-1B, 2, 4A-4C and 5A-5D can, but need not
necessarily include, one or more microprocessors, embed-
ded processors, controllers, application specific integrated
circuits (ASICs), digital signal processors (DSPs), multi-
core processors and the like.

Any non-transitory computer-readable medium tangibly
embodying software (also called “computer instructions™)
may be used in implementing one or more acts or operations
described herein and illustrated in FIGS. 1A-1B, 2, 4A-4C
and 5A-5D. Such software may include program codes
stored in memory 1106 and executed by processor 1105.
Memory 1106 may be implemented within or external to
processor 1105, depending on the embodiment. When
implemented in firmware and/or software, logic to perform
one or more acts or operations of FIGS. 1A-1B, 2, 4A-4C
and 5A-5D may be stored as one or more computer instruc-
tions or code on a non-transitory computer-readable
medium.

In some embodiments, one or more of computer(s) 1000
may include multiple processors, each of which is pro-
grammed with software in a memory 1106 shared with each
other to perform operations 130, 140 of the type described
above as illustrated in FIG. 1C. For example, a first proces-
sor 1105 in computer(s) 1000 may be programmed with
software in memory 1106 to implement a setup module 110,
to perform setup operation 130. A second processor 1105 in
computer(s) 1000 may be programmed with software in
memory 1106 to implement a runtime module 120, to
perform runtime operation 140. Although two processors
1105 have been just described for some embodiments to

US 9,465,607 B2

23

implement the respective means, in other embodiments a
single processor 1105 may be used in a time shared manner
to implement the just-described modules. Furthermore, in
still other embodiments, one processor 1105 may be used in
a time-shared manner to implement one or more parts of
various modules. Furthermore, although processors 1105
have been described above for certain embodiments as being
included in a single computer(s) 1000, in other embodiments
multiple such processors 1105 may be included in multiple
computers 1000, for example two computers 1000 may
implement the two modules 110 and 120 to perform the two
operations 130, 140 described above. Additionally, in one or
more such embodiments, one or more processor(s) 1105
with a bus 1103 execute ERP software 150 in computer(s)
1000.

FIGS. 8A-8] illustrate displays that are rendered by
mobile device 170 of some embodiments, in response to
performance by computer(s) 1000 of operations 130, 140 of
the type described above as illustrated in FIGS. 1A-1C, 2,
4A-4C and 5A-5D. Mobile device 170 includes a request
application which is generic to multiple request types, and
understands requests represented using a canonical XML
structure, as illustrated by requests shown in FIGS. 6A to
6D. Some embodiments of request application in mobile
device 170 does not contain any logic or data specific to a
particular request type. In such embodiments, no changes
are required to the request application in mobile device 170,
to display requests of any new type configured by setup
operation 130, followed by use thereof during execution of
runtime operation 140 that produces the requests in the form
of canonical XML documents in framework 100. Illustrative
examples of request types are Expense Reports, Purchase
Requisitions, Purchase Orders, Invoices, and Timecards.
Any new request type can be added to framework 100, using
setup operation 130 (e.g. as shown in FIGS. 3A to 3H),
followed by generation of requests of the new request type
by runtime operation 140, followed by display of the new
type of requests by the request app in mobile device 170.

Specifically, FIG. 8A illustrates an initial display of the
request application (“app”) 800 on execution thereof in
mobile device 170, including buttons that identify individual
request types, e.g. an expenses button 179B, a recruitment
button 179C, a requisitions button 179D, a purchase orders
button 179E. The request app may include buttons unrelated
to request types, such as a pending approvals button, a past
approvals button, a settings button, an about button, and a
signout button.

In response to a human (e.g. approver) touching expenses
button 179B, mobile device 170 transmits to server com-
puter(s) 200 described above a message containing the
request type of “expense.” This message is used by server
computer(s) 200 in performing act 143 to prepare and
transmit to mobile device 170 for display therein a summary
805 (similar to list 171 shown in FIG. 1C), identifying
requests 805A . . . 8051, 805J . . . 805N (as shown in FIG.
8B), as being available for display. In response to the human
(e.g. approver) touching a specific request in summary 805,
mobile device 170 transmits to server computer(s) 200 a
message that identifies the specific request 805J (e.g. similar
to request ID 172 shown in FIG. 1C). In response,
computer(s) 200 evaluate one or more rules to identify, one
or more region(s) renderable in the specific request, fol-
lowed by execution of specific software code(s) thereof,
followed by preparation and transmission of one or more
messages containing the specific request to mobile device
170 (e.g. similar to request 177 shown in FIG. 1C).

5

10

15

20

25

30

35

40

45

50

55

60

65

24

The message(s) of a specific request may include one or
more header(s) e.g. as regions 806 and 807 (FIG. 8C) and
one or more links to corresponding regions (or line item
groups), such as a link 813 (FIG. 8C) named “Expense
Lines” and another link 814 (FIG. 8C) named “Action
History”. Note that the name “Expense Lines” and the link
813 are an example of a name value pair in the header. Such
message(s) may further include content to be displayed on
operation of each link in the header, e.g. as a region 809
including display rows 810-812 (FIG. 8D) which is dis-
played on operation of the link 813 (FIG. 8C). As shown in
FIG. 8D, a single display row 810 includes four lines
810A-810D, wherein each line includes a name and a value,
e.g. line 810C includes the name “Amount” and the value
“123.00 USD”. Similarly, display rows 811 and 812 shown
in FIG. 8D include lines 811A-811D and lines 812A-812D
respectively. As will be readily apparent in view of this
description, header and content of a request may be trans-
mitted from the one or more computer(s) 200 to mobile
device 170, either together in a single message, or separately
in two or more messages.

Similarly, in response to the human (e.g. approver) touch-
ing Requisitions button 179C or Purchase Orders button
179D mobile device 170 interacts with server computer(s)
200 to display summaries (or lists) of available requests, as
shown in FIG. 8E or 8H respectively. Also similarly in
response to the human touching a specific request in the
available-request summaries shown in FIG. 8E or 8H,
mobile device 170 interacts with server computer(s) 200 to
display the header and content of the specific request iden-
tified in the respective available-request summary, e.g. as
shown in FIGS. 8F and 8G, or as shown in FIGS. 81 and 8]
respectively. Accordingly, a request app of the type
described above standardizes the user interface and docu-
ment exchange between in mobile device 170 and server
computer(s) 200.

Various adaptations and modifications may be made with-
out departing from the scope of the described embodiments.
Numerous modifications and adaptations of the embodi-
ments described herein are encompassed by the attached
claims.

The invention claimed is:

1. A computer-implemented method of generating
requests to be displayed, the computer-implemented method
comprising:

in a setup operation, preparing and transmitting one or

more first screens to receive, from one or more first
computers, a set of identifiers of one or more regions
that are includable in a request for user input indicative
of at least one of approval or disapproval;

in the setup operation, for each includable region identi-

fied in the set, receiving, from the one or more first
computers, a rule action pair corresponding to said each
includable region, wherein the rule action pair com-
prises a rule and an identifier of a specific software code
to be executed to render said each includable region
when the rule is satisfied;

in a runtime operation, responding to receipt from a

mobile device of a message that identifies the request,
by evaluating in one or more second computers at least
one rule in the rule action pair corresponding to at least
one includable region identified in the set received for
the request, to identify one or more regions to be
rendered in displaying the request;

in the runtime operation, for at least one to-be-rendered

region identified by the evaluating, executing in the one
or more second computers, at least the specific software

US 9,465,607 B2

25

code identified in the rule action pair corresponding to
said at least one to-be-rendered region, to obtain from
a relational database a plurality of first rows, each first
row comprising a plurality of name value pairs; and

in the runtime operation, preparing one or more second
screens comprising at least content of the request, said
at least content of the request comprising the plurality
of name value pairs in a plurality of second rows, each
name value pair in the plurality of name value pairs
being comprised in a single line of a second row in the
plurality of second rows, each second row comprising
a plurality of lines, the plurality of lines being
sequenced relative to one another in a specific sequence
received in the one or more first screens from the one
or more first computers;

in the runtime operation, transmitting to the mobile

device, said one or more second screens comprising at
least content of the request; and

in the runtime operation, receiving and storing said user

input in the relational database.
2. The computer-implemented method of claim 1 wherein
said at least one rule comprises an operator, an operand and
a constant, and the computer-implemented method com-
prises:
preparing and transmitting one or more third screens to:
receive from the one or more first computers, a first
selection identifying the operator in a set of operators;

receive from the one or more first computers, a second
selection identifying the operand in a set of operands;
and

receive from the one or more first computers, the constant;

wherein the operator, the operand and the constant are

used in said evaluating.

3. The computer-implemented method of claim 2 wherein
the specific software code identified in the rule action pair is
a first software code, and the one or more third screens are
configured to:

receive from the one or more first computers, a third

selection identifying for the rule a type of the operand
in a set of types;

wherein the set of types comprises:

a first type identifying the operand as an attribute of the

request; and

a second type identifying the operand as a result of

executing a second software code.

4. The computer-implemented method of claim 1 further
comprising, prior to receiving the set of identifiers of one or
more regions:

preparing and transmitting one or more third screens to

receive, from the one or more first computers, search
criteria to identify templates;

preparing and transmitting, to the one or more first

computers, a list of names of the templates, in response
to receipt of the search criteria; and

receiving, from the one or more first computers, a selected

name of a template of the request.

5. The computer-implemented method of claim 1 further
comprising, prior to receipt of the message that identifies the
request:

preparing and transmitting one or more third screens to

receive, from the one or more first computers, a map-
ping between a plurality of input parameters of the
specific software code and a plurality of attributes of
the request;

wherein the mapping is used in said executing.

6. The computer-implemented method of claim 1 further
comprising:

10

15

25

35

45

50

26

preparing and transmitting one or more third screens to
receive a plurality of selections identifying the names
in the plurality of name value pairs selected from
among a larger plurality of names of attributes output
by the specific software code.

7. The computer-implemented method of claim 6
wherein:

at least two rule action pairs correspond to at least two

includable regions identified in the set received for the
request;

the computer-implemented method further comprises

receiving from the one or more first computers, an
additional sequence; and

at least two rules in said at least two rule action pairs are

evaluated relative to one another in said additional
sequence.

8. The computer-implemented method of claim 1 wherein
the specific software code is comprised as a programmatic
method in an object of an application module, and wherein
the computer-implemented method comprises:

preparing and transmitting one or more third screens to

receive from the one or more first computers, a first
selection identifying said application module in a set of
application modules deployed in the one or more
second computers and a second selection identifying
said object in said application module;

wherein the identifier of the specific software code iden-

tifies, in said object, said programmatic method.

9. The computer-implemented method of claim 1 wherein
the message is hereinafter a first message, and the computer-
implemented method further comprises:

responding to receipt of the first message identifying the

request, by transmitting a header of the request com-
prising additional name value pairs;

wherein at least one value in the additional name value

pairs identifies said at least one to-be-rendered region.

10. One or more non-transitory computer-readable stor-
age media storing a plurality of instructions which, when
executed by one or more processors, cause the one or more
processors to generate requests to be displayed, the plurality
of instructions comprising:

to execute in a setup operation, instructions to prepare and

transmit one or more first screens to receive, from one
or more first computers, a set of identifiers of one or
more regions that are includable in a request for user
input indicative of at least one of approval or disap-
proval;

to execute in the setup operation, instructions, executable

for each includable region identified in the set, to
receive from the one or more first computers a rule
action pair corresponding to said each includable
region, wherein the rule action pair comprises a rule
and an identifier of a specific software code to be
executed to render said each includable region when
the rule is satisfied;

to execute a runtime operation, instructions, in response to

receipt from a mobile device of a message that identi-
fies the request, to evaluate in one or more second
computers at least one rule in the rule action pair
corresponding to at least one includable region identi-
fied in the set received for the request, to identify one
or more regions to be rendered in displaying the
request;

to execute in the runtime operation, instructions, for at

least one to-be-rendered region identified by execution
of the instructions to evaluate, to execute in the one or
more second computers at least the specific software

US 9,465,607 B2

27

code identified in the rule action pair corresponding to
said at least one to-be-rendered region, to obtain from
a relational database a plurality of first rows, each first
row comprising a plurality of name value pairs; and
execute in the runtime operation, instructions to pre-
pare one or more second screens comprising at least
content of the request, said at least content of the
request comprising the plurality of name value pairs in
aplurality of rows, each name value pair in the plurality
of name value pairs being comprised in a single line of
a second row in the plurality of second rows, each
second row comprising a plurality of lines, the plurality
of lines being sequenced relative to one another in a
specific sequence received in the one or more first
screens from the one or more first computers;

to execute in the runtime operation, instructions to trans-

mit to the mobile device, said at least content of the
request; and

to execute in the runtime operation, instructions to receive

and store said user input in the relational database.

11. The one or more non-transitory computer-readable
storage media of claim 10 wherein said at least one rule
comprises an operator, an operand and a constant, and the
plurality of instructions further comprising:

instructions to prepare and transmit one or more third

screens to:
receive from the one or more first computers, a first
selection identifying the operator in a set of operators;

receive from the one or more first computers, a second
selection identifying the operand in a set of operands;
and

receive from the one or more first computers, the constant;

wherein the operator, the operand and the constant are

used in said evaluating.

12. The one or more non-transitory computer-readable
storage media of claim 11 wherein the specific software code
identified in the rule action pair is a first software code, and
the one or more third screens are configured to:

receive from the one or more first computers, a third

selection identifying for the rule a type of the operand
in a set of types;

wherein the set of types comprises:

a first type identifying the operand as an attribute of the

request; and

a second type identifying the operand as a result of

executing a second software code.

13. The one or more non-transitory computer-readable
storage media of claim 10 wherein the plurality of instruc-
tions comprise:

additional instructions executable prior to receipt of the

set of identifiers, to:

prepare and transmit one or more third screens to receive,

from the one or more first computers, search criteria to
identify templates;

prepare and transmit, to the one or more first computers,

a list of names of templates, in response to receipt of the
search criteria; and

receive, from the one or more first computers, a selected

name of a template of the request.

14. The one or more non-transitory computer-readable
storage media of claim 10 wherein the plurality of instruc-
tions comprise:

additional instructions executable prior to receipt of the

message that identifies the request, to:

prepare and transmit one or more third screens to receive,

from the one or more first computers, a mapping

to

10

—

5

20

30

35

40

45

60

65

28

between a plurality of input parameters of the specific
software code and a plurality of attributes of the
request;

wherein the mapping is used in said instructions to

execute.

15. The one or more non-transitory computer-readable
storage media of claim 10 wherein the plurality of instruc-
tions comprise:

instructions to prepare and transmit one or more third

screens to receive a plurality of selections identifying
the names in the plurality of name value pairs selected
from among a larger plurality of names of attributes
output by the specific software code.

16. The one or more non-transitory computer-readable
storage media of claim 15 wherein:

at least two rule action pairs correspond to at least two

includable regions identified in the set received for the
request;

the plurality of instructions comprise instructions to

receive from the one or more first computers, an
additional sequence; and

at least two rules in said at least two rule action pairs are

evaluated relative to one another in said additional
sequence.

17. The one or more non-transitory computer-readable
storage media of claim 10 wherein the specific software
code is comprised as a programmatic method in an object of
an application module, and the plurality of instructions
comprise:

instructions to prepare and transmit one or more third

screens to receive from the one or more first computers,
a first selection identifying said application module in
a set of application modules deployed in the one or
more second computers and a second selection identi-
fying said object in said application module;

wherein the identifier of the specific software code iden-

tifies, in said object, said programmatic method.

18. The one or more non-transitory computer-readable
storage media of claim 10 wherein the message is herein-
after a first message, and the plurality of instructions com-
prise:

instructions to respond to receipt of the first message

identifying the request, by transmitting a header of the

request comprising additional name value pairs;
wherein at least one value in the additional name value

pairs identifies said at least one to-be-rendered region.

19. The one or more non-transitory computer-readable
storage media of claim 10 wherein:

the names in the plurality of name value pairs are imple-

mented as columns in one or more tables of the
relational database.

20. An apparatus comprising one or more processors
coupled to one or more non-transitory computer-readable
storage media, wherein the one or more non-transitory
computer-readable storage media comprise a plurality of
instructions executable by the one or more processors, the
apparatus comprising:

to execute in a setup operation, means for preparing and

transmitting one or more first screens to receive, from
one or more first computers, a set of identifiers of one
or more regions that are includable in a request for user
input indicative of at least one of approval or disap-
proval;

to execute in the setup operation, means, configured for

each includable region identified in the set, for receiv-
ing from the one or more first computers a rule action
pair corresponding to said each includable region,

US 9,465,607 B2

29

wherein the rule action pair comprises a rule and an
identifier of a specific software code to be executed to
render said each includable region when the rule is
satisfied;

to execute in a runtime operation, means for responding

to receipt from a mobile device of a message that
identifies the request, by evaluating in one or more
second computers at least one rule in the rule action
pair corresponding to at least one includable region
identified in the set received for the request, to identify
one or more regions to be rendered in displaying the
request;

to execute in the runtime operation, means, configured for

at least one to-be-rendered region identified by the
evaluating, for executing in the one or more second
computers at least the specific software code identified
in the rule action pair corresponding to said at least one
to-be-rendered region, to obtain from a relational data-
base a plurality of first rows, each first row comprising
a plurality of name value pairs; and

15

30

to execute in the runtime operation, means for preparing

one or more second screens comprising at least content
of the request, said at least content of the request
comprising the plurality of name value pairs in a
plurality of rows, each name value pair in the plurality
of name value pairs being comprised in a single line of
a second row in the plurality of second rows, each
second row comprising a plurality of lines, the plurality
of lines being sequenced relative to one another in a
specific sequence received in the one or more first
screens from the one or more first computers;

to execute in the runtime operation, means for transmit-

ting to the mobile device, said at least content of the
request; and

to execute in the runtime operation, means for receiving

and storing in the relational database, said user input on
said request.

